在SAP HANA Express Edition里进行文本分析
这个练习会使用SAP HANA Express Edition的文本语义分析引擎对JSON格式的documents进行语义分析。
首先创建一个column table,对其index开启fuzzy text search(模糊搜索)功能。
上述描述的操作可以用下面的SQL语句来完成:
create column table food_analysis
(
name nvarchar(64),
description text FAST PREPROCESS ON FUZZY SEARCH INDEX ON
);
其中description字段开启了模糊搜索功能。
将存储于名为doc_store的document store collection里的json key-value键值对拷贝到刚刚创建的数据库表里:
insert into food_analysis
with doc_store as (select "name", "description" from food_collection)
select doc_store."name" as name, doc_store."description" as description
from doc_store;
执行上述的sql语句,确保数据全部拷贝到数据库表food_analysis中:
使用下列的sql语句对description字段进行模糊搜索:
select name, score() as similarity, TO_VARCHAR(description)
from food_analysis
where contains(description, 'nuts', fuzzy(0.5,'textsearch=compare'))
order by similarity desc
执行结果:
HANA Express Edition里的linguistic 文本分析步骤也比较简单。
首先还是创建一个数据库表:
create column table food_sentiment
(
name nvarchar(64) primary key,
description nvarchar(2048)
);
将document store里的json数据拷贝到数据库表里:
insert into food_sentiment
with doc_store as (select "name", "description" from food_collection)
select doc_store."name" as name, doc_store."description" as description
from doc_store;
针对description字段创建一个新的index:
CREATE FULLTEXT INDEX FOOD_SENTIMENT_INDEX ON "FOOD_SENTIMENT" ("DESCRIPTION")
CONFIGURATION 'GRAMMATICAL_ROLE_ANALYSIS'
LANGUAGE DETECTION ('EN')
SEARCH ONLY OFF
FAST PREPROCESS OFF
TEXT MINING OFF
TOKEN SEPARATORS ''
TEXT ANALYSIS ON;
上述SQL语句会自动创建一个名为$TA_FOOD_SENTIMENT_INDEX的文本分析表:
该表里的内容:
由此可以发现,之前我们导入到数据库表里的英文句子,被HANA text engine拆解成单词,并且每个单词的词性也自动被HANA解析出来了。
通过csv文件提供的数据库表内容:
links.csv的格式:
movies.csv格式,一个movie可以有多种风格(genres),通过|分隔:
ratings.csv:
用户给movie打得分:
tags.csv:movie的标签
练习一:
列出四张表的总记录数:
select 'links' as "table name", count(1) as "row count" from "MOVIELENS"."public.aa.movielens.hdb::data.LINKS"
union all
select 'movies' as "table name", count(1) as "row count" from "MOVIELENS"."public.aa.movielens.hdb::data.MOVIES"
union all
select 'ratings' as "table name", count(1) as "row count" from "MOVIELENS"."public.aa.movielens.hdb::data.RATINGS"
union all
select 'tags' as "table name", count(1) as "row count" from "MOVIELENS"."public.aa.movielens.hdb::data.TAGS";
执行结果:
练习2:计算总共9125部电影,一共包含多少艺术类别?
DO
BEGIN
DECLARE genreArray NVARCHAR(255) ARRAY;
DECLARE tmp NVARCHAR(255);
DECLARE idx INTEGER;
DECLARE sep NVARCHAR(1) := '|';
DECLARE CURSOR cur FOR SELECT DISTINCT "GENRES" FROM "MOVIELENS"."public.aa.movielens.hdb::data.MOVIES";
DECLARE genres NVARCHAR (255) := '';
idx := 1;
FOR cur_row AS cur() DO
SELECT cur_row."GENRES" INTO genres FROM DUMMY;
tmp := :genres;
WHILE LOCATE(:tmp,:sep) > 0 DO
genreArray[:idx] := SUBSTR_BEFORE(:tmp,:sep);
tmp := SUBSTR_AFTER(:tmp,:sep);
idx := :idx + 1;
END WHILE;
genreArray[:idx] := :tmp;
END FOR;
genreList = UNNEST(:genreArray) AS ("GENRE");
SELECT "GENRE" FROM :genreList GROUP BY "GENRE";
END;
执行结果,总共包含18种:
练习3:计算每种艺术类别总共包含多少部电影:
DO
BEGIN
DECLARE genreArray NVARCHAR(255) ARRAY;
DECLARE tmp NVARCHAR(255);
DECLARE idx INTEGER;
DECLARE sep NVARCHAR(1) := '|';
DECLARE CURSOR cur FOR SELECT DISTINCT "GENRES" FROM "MOVIELENS"."public.aa.movielens.hdb::data.MOVIES";
DECLARE genres NVARCHAR (255) := '';
idx := 1;
FOR cur_row AS cur() DO
SELECT cur_row."GENRES" INTO genres FROM DUMMY;
tmp := :genres;
WHILE LOCATE(:tmp,:sep) > 0 DO
genreArray[:idx] := SUBSTR_BEFORE(:tmp,:sep);
tmp := SUBSTR_AFTER(:tmp,:sep);
idx := :idx + 1;
END WHILE;
genreArray[:idx] := :tmp;
END FOR;
genreList = UNNEST(:genreArray) AS ("GENRE");
SELECT "GENRE", count(1) FROM :genreList GROUP BY "GENRE";
END;
练习4:列出每部电影包含的风格数目:
SELECT
"MOVIEID"
, "TITLE"
, OCCURRENCES_REGEXPR('[|]' IN GENRES) + 1 "GENRE_COUNT"
, "GENRES"
FROM "MOVIELENS"."public.aa.movielens.hdb::data.MOVIES"
ORDER BY "GENRE_COUNT" ASC;
练习5:罗列出每部电影的风格分布情况
SELECT
"GENRE_COUNT"
, COUNT(1)
FROM (
SELECT
OCCURRENCES_REGEXPR('[|]' IN "GENRES") + 1 "GENRE_COUNT"
FROM "MOVIELENS"."public.aa.movielens.hdb::data.MOVIES"
)
GROUP BY "GENRE_COUNT" ORDER BY "GENRE_COUNT";
比如至少拥有1个风格的电影,有2793部,2个风格的电影有3039部,等等。
练习6:计算movie的rating分布情况
SELECT DISTINCT
MIN("RATING_COUNT") OVER( ) AS "MIN",
MAX("RATING_COUNT") OVER( ) AS "MAX",
AVG("RATING_COUNT") OVER( ) AS "AVG",
SUM("RATING_COUNT") OVER( ) AS "SUM",
MEDIAN("RATING_COUNT") OVER( ) AS "MEDIAN",
STDDEV("RATING_COUNT") OVER( ) AS "STDDEV",
COUNT(*) OVER( ) AS "CATEGORY_COUNT"
FROM (
SELECT "MOVIEID", COUNT(1) as "RATING_COUNT"
FROM "MOVIELENS"."public.aa.movielens.hdb::data.RATINGS"
GROUP BY "MOVIEID"
)
GROUP BY "RATING_COUNT";
明细情况:
SELECT "RATING_COUNT", COUNT(1) as "MOVIE_COUNT"
FROM (
SELECT "MOVIEID", COUNT(1) as "RATING_COUNT"
FROM "MOVIELENS"."public.aa.movielens.hdb::data.RATINGS"
GROUP BY "MOVIEID"
)
GROUP BY "RATING_COUNT" ORDER BY "RATING_COUNT" asc;
比如有397部电影的用户投票数为5票
练习7:统计用户投票情况
SELECT "RATING_COUNT", COUNT(1) as "USER_COUNT"
FROM (
SELECT "USERID", COUNT(1) as "RATING_COUNT"
FROM "MOVIELENS"."public.aa.movielens.hdb::data.RATINGS"
GROUP BY "USERID"
)
GROUP BY "RATING_COUNT" ORDER BY 1 DESC;
有一位用户投了2391票,一位用户投了1868票:
练习8:统计用户投票得分情况
SELECT "RATING", COUNT(1) as "RATING_COUNT"
FROM "MOVIELENS"."public.aa.movielens.hdb::data.RATINGS"
GROUP BY "RATING" ORDER BY 1 DESC;
有15095份用户投票,打的分数是5分
- 点赞
- 收藏
- 关注作者
评论(0)