二叉树性质
【摘要】
二叉树性质
1.有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:
若I为结点编号则 如果I>1,则其父结点的编号为I/2;
如果2I<=N,则其左孩子(即左子树的根...
二叉树性质
1.有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:
若I为结点编号则 如果I>1,则其父结点的编号为I/2;
如果2I<=N,则其左孩子(即左子树的根结点)的编号为2I;若2*I>N,则无左孩子;
如果2I+1<=N,则其右孩子的结点编号为2I+1;若2*I+1>N,则无右孩子。
2.给定N个节点,能构成h(N)种不同的二叉树。
h(N)为卡特兰数的第N项。h(n)=C(2*n,n)/(n+1)。
3.设有i个枝点,I为所有枝点的道路长度总和,J为叶的道路长度总和J=I+2i
4.对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
文章来源: blog.csdn.net,作者:肥学,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jiahuiandxuehui/article/details/111826022
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)