清华和旷视提出RepLKNet:采用31×31大kernel的CNN网络,性能超过Swin

举报
风吹稻花香 发表于 2022/03/17 22:53:56 2022/03/17
【摘要】 开源地址: https://github.com/DingXiaoH/RepLKNet-pytorch 有论文: https://github.com/megvii-research/RepLKNet CVPR22最新论文,RepVGG作者提出RepLKNet:采用31×31大kernel的CNN网络,性能超过Swin,作者...

开源地址:

https://github.com/DingXiaoH/RepLKNet-pytorch

有论文:

https://github.com/megvii-research/RepLKNet

CVPR22最新论文,RepVGG作者提出RepLKNet:采用31×31大kernel的CNN网络,性能超过Swin,作者在论文中提出了大kernel size卷积的4个设计准则,并设计了31x32的纯CNN结构,在图像分类和下游检测分割上超过Swin!

In this paper we revisit large kernel design in modern convolutional neural networks (CNNs), which is often ne- glected in the past few years. Inspired by recent advances of vision transformers (ViTs), we point out that using a few large kernels instead of a stack of small convolutions could be a more powerful paradigm. We therefore summarize 5 guidelines, e.g., applying re-parameterized large depth- wise convolutions, to design efficient high-performance large-kernel CNNs. Following the guidelines, we propose RepLKNet, a pure CNN architecture whose kernel size is as large as 31×31. RepLKNet greatly bridges the perfor- mance gap between CNNs and ViTs, e.g., achieving compa- rable or better results than Swin Transformer on ImageNet and downstream tasks, while the latency of RepLKNet is much lower. Moreover, RepLKNet also shows feasible scal- ability to big data and large models, obtaining 87.8% top-1 accuracy on ImageNet and 56.0% mIoU on ADE20K. At last, our study further suggests large-kernel CNNs share several nice properties with ViTs, e.g., much larger effective receptive fields than conventional CNNs, and higher shape bias rather than texture bias. Code & models at https: //http://github.com/megvii-research/RepLKNet.

文章来源: blog.csdn.net,作者:AI视觉网奇,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/jacke121/article/details/123526926

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。