Keras 学习率调整
Keras提供两种学习率适应方法,可通过回调函数实现。
keras.callbacks.LearningRateScheduler(schedule)
该回调函数是学习率调度器.
- schedule:函数,该函数以epoch号为参数(从0算起的整数),返回一个新学习率(浮点数)
import keras.backend as K
from keras.callbacks import LearningRateScheduler
def scheduler(epoch):
# 每隔100个epoch,学习率减小为原来的1/10
if epoch % 100 == 0 and epoch != 0:
lr = K.get_value(model.optimizer.lr)
K.set_value(model.optimizer.lr, lr * 0.1)
print("lr changed to {}".format(lr * 0.1))
return K.get_value(model.optimizer.lr)
reduce_lr = LearningRateScheduler(scheduler)
model.fit(train_x, train_y, batch_size=32, epochs=300, callbacks=[reduce_lr])
keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0)
当评价指标不在提升时,减少学习率
当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率
- monitor:被监测的量
- factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
- patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
- mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
- epsilon:阈值,用来确定是否进入检测值的“平原区”
- cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
- min_lr:学习率的下限
- from keras.callbacks import ReduceLROnPlateau
- reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=10, mode='auto')
- model.fit(train_x, train_y, batch_size=32, epochs=300, validation_split=0.1, callbacks=[reduce_lr])
- 点赞
- 收藏
- 关注作者
评论(0)