YoloV5实战:手把手教物体检测——YoloV5
【摘要】 目录摘要训练1、下载代码2、配置环境3、准备数据集4、生成数据集5、修改配置参数6、修改train.py的参数7、查看训练结果测试摘要YOLOV5严格意义上说并不是YOLO的第五个版本,因为它并没有得到YOLO之父Joe Redmon的认可,但是给出的测试数据总体表现还是不错。详细数据如下:YOLOv5并不是一个单独的模型,而是一个模型家族,包括了YOLOv5s、YOLOv5m、YOLO...
目录
摘要
YOLOV5严格意义上说并不是YOLO的第五个版本,因为它并没有得到YOLO之父Joe Redmon的认可,但是给出的测试数据总体表现还是不错。详细数据如下:
YOLOv5并不是一个单独的模型,而是一个模型家族,包括了YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x、YOLOv5x+TTA,这点有点儿像EfficientDet。由于没有找到V5的论文,我们也只能从代码去学习它。总体上和YOLOV4差不多,可以认为是YOLOV5的加强版。
项目地址:
训练
1、下载代码
项目地址:
,最近作者又更新了一些代码。
2、配置环境
3、准备数据集
数据集采用Labelme标注的数据格式,数据集从RSOD数据集中获取了飞机和油桶两类数据集,并将其转为Labelme标注的数据集。
数据集的地址: https://pan.baidu.com/s/1iTUpvA9_cwx1qiH8zbRmDg
提取码:gr6g
或者:
将下载的数据集解压后放到工程的根目录。为下一步生成测试用的数据集做准备。如下图:
4、生成数据集
YoloV5的数据集和以前版本的数据集并不相同,我们先看一下转换后的数据集。
数据结构如下图:
images文件夹存放train和val的图片
labels里面存放train和val的物体数据,里面的每个txt文件和images里面的图片是一一对应的。
txt文件的内容如下:
格式:物体类别 x y w h
坐标是不是真实的坐标,是将坐标除以宽高后的计算出来的,是相对于宽和高的比例。
下面我们编写生成数据集的代码,新建LabelmeToYoloV5.py,然后写入下面的代码。
这段代码执行完成会在LabelmeData生成每个图片的txt标注数据,同时在tmp文件夹下面生成训练集、验证集和测试集的txt,txt记录的是图片的路径,为下一步生成YoloV5训练和测试用的数据集做准备。在tmp文件夹下面新建MakeData.py文件,生成最终的结果,目录结构如下图:
打开MakeData.py,写入下面的代码。
执行完成后就可以生成YoloV5训练使用的数据集了。结果如下:
5、修改配置参数
6、修改train.py的参数
修改完成后,就可以开始训练了。如下图所示:
7、查看训练结果
在经历了300epoch训练之后,我们会在runs文件夹下面找到训练好的权重文件和训练过程的一些文件。如图:
测试
首先需要在voc.yaml中增加测试集的路径,打开voc.yaml,在val字段后面增加test: tmp/test.txt这行代码,如图:
修改test.py中的参数,下面的这几个参数要修改。
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', nargs='+', type=str, default='runs/exp7/weights/best.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/voc.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=2, help='size of each image batch')
parser.add_argument('--save-txt', default='True', action='store_true', help='save results to *.txt')
在275行 修改test的方法,增加保存测试结果的路径。这样测试完成后就可以在inference\images查看到测试的图片,在inference\output中查看到保存的测试结果。
如图:
下面是运行的结果:
代码和模型:
【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
作者其他文章
评论(0)