负样本回归loss
【摘要】
从decode看,如果系数(loc[2:] 为宽高)是1,那么就是priors[:,2:],就是候选框。
def decode(loc, priors, variances): """Decode locations from predictions using priors to undo the encoding ...
从decode看,如果系数(loc[2:] 为宽高)是1,那么就是priors[:,2:],就是候选框。
-
def decode(loc, priors, variances):
-
"""Decode locations from predictions using priors to undo
-
the encoding we did for offset regression at train time.
-
Args:
-
loc (tensor): location predictions for loc layers,
-
Shape: [num_priors,4]
-
priors (tensor): Prior boxes in center-offset form.
-
Shape: [num_priors,4].
-
variances: (list[float]) Variances of priorboxes
-
Return:
-
decoded bounding box predictions
-
"""
-
-
boxes = torch.cat((
-
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
-
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
-
boxes[:, :2] -= boxes[:, 2:] / 2
-
boxes[:, 2:] += boxes[:, :2]
-
return boxes
def encode(matched, priors, variances
文章来源: blog.csdn.net,作者:AI视觉网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/103876459
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)