onnx retina人脸检测
【摘要】
import osimport timefrom math import ceil import onnxruntimeimport numpy as npimport cv2import argparseimport argparseimport numpy as npfrom data import cfg_mnet, cfg_pe...
import os
import time
from math import ceil
import onnxruntime
import numpy as np
import cv2
import argparse
import argparse
import numpy as np
from data import cfg_mnet, cfg_peleenet
from utils.nms.py_cpu_nms import py_cpu_nms
from math import ceil
from itertools import product as product
#sigmoid函数
def sigmoid(x):
s = 1 / (1 + np.exp(-1*x))
return s
def softmax(x, axis=1):
# 计算每行的最大值
row_max = x.max(axis=axis)
# 每行元素都需要减去对应的最大值,否则求exp(x)会溢出,导致inf情况
row_max = row_max.reshape(-1, 1)
x = x - row_max
x_exp = np.exp(x)
x_sum = np.sum(x_exp, axis=axis, keepdims=True)
s = x_exp / x_sum
return s
def decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shap
文章来源: blog.csdn.net,作者:AI视觉网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/104508041
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)