retina 负样本回归增强loss
【摘要】
目前没看到明显改善
import configparser import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.autograd import Variable from focal_loss import FocalLossfrom u...
目前没看到明显改善
-
import configparser
-
-
import torch
-
import torch.nn as nn
-
import torch.nn.functional as F
-
from torch.autograd import Variable
-
-
from focal_loss import FocalLoss
-
from utils.box_utils import match, log_sum_exp
-
from data import cfg_mnet
-
-
GPU = cfg_mnet['gpu_train']
-
-
-
class MultiBoxLoss(nn.Module):
-
"""SSD Weighted Loss Function
-
Compute Targets:
-
1) Produce Confidence Target Indices by matching ground truth boxes
-
with (default) 'priorboxes' that have jaccard index > threshold parameter
-
(default threshold: 0.5).
-
2) Produce localization target by 'encoding' variance into offsets of ground
-
truth boxes and their matched 'priorboxes'.
-
3) Hard negative mining to filter the excessive number of negative examples
-
that comes with using a large number of default bounding boxes.
-
(default negative:positive ratio 3:1)
-
文章来源: blog.csdn.net,作者:AI视觉网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/104706256
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)