监督式学习与非监督式学习
【摘要】 监督式学习监督式学习是一个机器学习中的方法,可以由训练资料中学到或建立一个模式,并依此模式推测新的实例。训练资料是由输入物件和预期输出所组成。函数的输出可以是一个连续的值,或是预测一个分类标签。监督式学习需要使用有输入和预期输出标记的数据集。当你使用监督式学习训练人工智能时,你需要提供一个输入并告诉它预期的输出结果。如果人工智能产生的输出结果是错误的,它将重新调整自己的计算。这个过程将在数据...
监督式学习
监督式学习是一个机器学习中的方法,可以由训练资料中学到或建立一个模式,并依此模式推测新的实例。训练资料是由输入物件和预期输出所组成。函数的输出可以是一个连续的值,或是预测一个分类标签。监督式学习需要使用有输入和预期输出标记的数据集。
当你使用监督式学习训练人工智能时,你需要提供一个输入并告诉它预期的输出结果。如果人工智能产生的输出结果是错误的,它将重新调整自己的计算。这个过程将在数据集上不断迭代地完成,直到AI不再出错。举一个监督式学习的一个例子:天气预报人工智能,它学会利用历史数据来预测天气。训练数据包含输入(过去天气的压力、湿度、风速)和输出(过去天气的温度)。
监督式学习之所以被称为监督式学习,是因为算法从训练数据集学习的过程就像是一位老师正在监督学习。在我们预先知道正确的分类答案的情况下,算法对训练数据不断进行迭代预测,然后预测结果由“老师”进行不断修正。当算法达到可接受的性能水平时,学习过程才会停止。
非监督式学习
非监督式学习是指在没有类别信息情况下,通过对所研究对象的大量样本的数据分析实现对样本分类的一种数据处理方法。它是利用既不分类也不标记的信息进行机器学习,并允许算法在没有指导的情况下对这些信息进行操作。
在监督学习中,数据并不会被特别标识,学习模型是为了推断出数据的一些内在结构。非监督学习一般有两种思路:第一种思路是在指导Agent时不为其指定明确的分类,而是在成功时采用某种形式的激励制度。这类训练通常会被置于决策问题的框架里,因为它的目标不是产生一个分类系统,而是做出最大回报的决定,所以这类学习往往被称为强化学习;第二种思路称为聚合,这类学习类型的目标不是让效用函数最大化,而是找到训练数据中的近似点。
举一个非监督式学习的例子:亚马逊等电子商务网站的行为预测AI。它将创建自己输入数据的分类,帮助亚马逊识别哪种用户最有可能购买不同的产品(交叉销售策略)。目前大多数电商APP的推荐算法也是利用非监督式学习。
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)