分类器的常用性能指标的通俗释义

举报
ShaderJoy 发表于 2021/12/29 23:58:22 2021/12/29
【摘要】 1. TP(True Postive)、TN(True Negative)、FP(False Negative)、 FN(False Negative) 举个医生看病的例子: 假设患病为阳性(Positive),健康为阴性(Negative) 当医生正确地将患病病人确诊为有病,那么就是TP;当医生正确地将康复病人确诊为没病,那么就是TN...

1. TP(True Postive)、TN(True Negative)、FP(False Negative)、 FN(False Negative)

举个医生看病的例子:

假设患病为阳性(Positive),健康为阴性(Negative)

当医生正确地将患病病人确诊为有病,那么就是TP;当医生正确地将康复病人确诊为没病,那么就是TN;

当医生错误地将健康病人确诊为有病,那么就是FP;当医生错误地将患病病人确诊为没病,那么就是FN;

 

2. 准确率(Precision)的公式

Precision =TP/(TP+FP)

可以理解为医生预测对的阳性(患病)数占医生预测阳性(患病)总量的比率。

但是该指标有局限性,因为没有用到真正的阳性总数,所以就有了召回率。

 

3. 召回率(Recall)的公式

Recall = TP/(TP+FN)

可以理解为医生预测对的阳性(患病)数占真正的阳性(患病)数的比率。

但是该指标同样也存在局限性,尤其当阴阳样本失衡——阳性样本数接近于总样本数时,所以就有了 F 值。

 

4. F 值的公式

F=2rp/(p+r)

p 即 Precision, r 即 Recall,所以 F 值又被称为准确率和召回率的调和值。

单一的准确率高和召回率高并不能说明问题,所以才有了F值的衡量指标。

 

5. ROC 空间的含义

ROC空间将伪阳性率(FPR)定义为 X 轴,真阳性率(TPR)定义为 Y 轴。这两个值由上面四个值计算得到,公式如下:

TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率。

TPR=TP/(TP+FN) 【与召回率公式相同】

FPR:在所有实际为阴性的样本中,被错误地判断为阳性之比率。

FPR=FP/(FP+TN)

放在医生看病的例子上来理解上述两个指标:

那么尽量把有病的揪出来是主要任务,也就是第一个指标TPR,要越高越好;

而把没病的样本误诊为有病的,也就是第二个指标FPR,要越低越好;

反映在图上就是在相同的 FPR 的条件下,TPR越高越好,ROC 曲线下方覆盖的面积越大越好。


 





文章来源: panda1234lee.blog.csdn.net,作者:panda1234lee,版权归原作者所有,如需转载,请联系作者。

原文链接:panda1234lee.blog.csdn.net/article/details/70945179

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。