总结几个好用的CNN模块(Pytorch)

举报
AI浩 发表于 2021/12/23 01:40:36 2021/12/23
【摘要】 总结几个比较好的CNN模块。 SEBlock 代码: class SEBlock(nn.Module):     def __init__(self, input_channels, internal_neurons):       &...

总结几个比较好的CNN模块。

  • SEBlock

代码:


      class SEBlock(nn.Module):
          def __init__(self, input_channels, internal_neurons):
              super(SEBlock, self).__init__()
              self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1,
                                    bias=True, padding_mode='same')
              self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1,
                                  bias=True, padding_mode='same')
          def forward(self, inputs):
              x = F.avg_pool2d(inputs, kernel_size=inputs.size(3))
              x = self.down(x)
              x = F.leaky_relu(x)
              x = self.up(x)
              x = F.sigmoid(x)
              x = x.repeat(1, 1, inputs.size(2), inputs.size(3))
              return inputs * x
  
 
  • ACBlock

代码


      class CropLayer(nn.Module):
          #   E.g., (-1, 0) means this layer should crop the first and last rows of the feature map. And (0, -1) crops the first and last columns
          def __init__(self, crop_set):
              super(CropLayer, self).__init__()
              self.rows_to_crop = - crop_set[0]
              self.cols_to_crop = - crop_set[1]
              assert self.rows_to_crop >= 0
              assert self.cols_to_crop >= 0
          def forward(self, input):
              if self.rows_to_crop == 0 and self.cols_to_crop == 0:
                  return input
              elif self.rows_to_crop > 0 and self.cols_to_crop == 0:
                  return input[:, :, self.rows_to_crop:-self.rows_to_crop, :]
              elif self.rows_to_crop == 0 and self.cols_to_crop > 0:
                  return input[:, :, :, self.cols_to_crop:-self.cols_to_crop]
              else:
                  return input[:, :, self.rows_to_crop:-self.rows_to_crop, self.cols_to_crop:-self.cols_to_crop]
      class ACBlock(nn.Module):
          def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=1, dilation=1, groups=1,
                       padding_mode='same', deploy=False,
                       use_affine=True, reduce_gamma=False, use_last_bn=False, gamma_init=None):
              super(ACBlock, self).__init__()
              self.deploy = deploy
              if deploy:
                  self.fused_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                                              kernel_size=(kernel_size, kernel_size), stride=stride,
                                              padding=padding, dilation=dilation, groups=groups, bias=True,
                                              padding_mode=padding_mode)
              else:
                  self.square_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                                               kernel_size=(kernel_size, kernel_size), stride=stride,
                                               padding=padding, dilation=dilation, groups=groups, bias=False,
                                               padding_mode=padding_mode)
                  self.square_bn = nn.BatchNorm2d(num_features=out_channels, affine=use_affine)
                  center_offset_from_origin_border = padding - kernel_size // 2
                  ver_pad_or_crop = (padding, center_offset_from_origin_border)
                  hor_pad_or_crop = (center_offset_from_origin_border, padding)
                  if center_offset_from_origin_border >= 0:
                      self.ver_conv_crop_layer = nn.Identity()
                      ver_conv_padding = ver_pad_or_crop
                      self.hor_conv_crop_layer = nn.Identity()
                      hor_conv_padding = hor_pad_or_crop
                  else:
                      self.ver_conv_crop_layer = CropLayer(crop_set=ver_pad_or_crop)
                      ver_conv_padding = (0, 0)
                      self.hor_conv_crop_layer = CropLayer(crop_set=hor_pad_or_crop)
                      hor_conv_padding = (0, 0)
                  self.ver_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(kernel_size, 1),
                                            stride=stride,
                                            padding=ver_conv_padding, dilation=dilation, groups=groups, bias=False,
                                            padding_mode=padding_mode)
                  self.hor_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(1, kernel_size),
                                            stride=stride,
                                            padding=hor_conv_padding, dilation=dilation, groups=groups, bias=False,
                                            padding_mode=padding_mode)
                  self.ver_bn = nn.BatchNorm2d(num_features=out_channels, affine=use_affine)
                  self.hor_bn = nn.BatchNorm2d(num_features=out_channels, affine=use_affine)
                  if reduce_gamma:
                      assert not use_last_bn
                      self.init_gamma(1.0 / 3)
                  if use_last_bn:
                      assert not reduce_gamma
                      self.last_bn = nn.BatchNorm2d(num_features=out_channels, affine=True)
                  if gamma_init is not None:
                      assert not reduce_gamma
                      self.init_gamma(gamma_init)
          def init_gamma(self, gamma_value):
              init.constant_(self.square_bn.weight, gamma_value)
              init.constant_(self.ver_bn.weight, gamma_value)
              init.constant_(self.hor_bn.weight, gamma_value)
              print('init gamma of square, ver and hor as ', gamma_value)
          def single_init(self):
              init.constant_(self.square_bn.weight, 1.0)
              init.constant_(self.ver_bn.weight, 0.0)
              init.constant_(self.hor_bn.weight, 0.0)
              print('init gamma of square as 1, ver and hor as 0')
          def forward(self, input):
              if self.deploy:
                  return self.fused_conv(input)
              else:
                  square_outputs = self.square_conv(input)
                  square_outputs = self.square_bn(square_outputs)
                  vertical_outputs = self.ver_conv_crop_layer(input)
                  vertical_outputs = self.ver_conv(vertical_outputs)
                  vertical_outputs = self.ver_bn(vertical_outputs)
                  horizontal_outputs = self.hor_conv_crop_layer(input)
                  horizontal_outputs = self.hor_conv(horizontal_outputs)
                  horizontal_outputs = self.hor_bn(horizontal_outputs)
                  result = square_outputs + vertical_outputs + horizontal_outputs
                  if hasattr(self, 'last_bn'):
                      return self.last_bn(result)
                  return result
  
 
  •  eca_layer


      class eca_layer(nn.Module):
         """Constructs a ECA module.
       Args:
       channel: Number of channels of the input feature map
       k_size: Adaptive selection of kernel size
       """
         def __init__(self, channel, k_size=3):
             super(eca_layer, self).__init__()
              self.avg_pool = nn.AdaptiveAvgPool2d(1)
              self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
              self.sigmoid = nn.Sigmoid()
         def forward(self, x):
             # x: input features with shape [b, c, h, w]
              b, c, h, w = x.size()
             # feature descriptor on the global spatial information
              y = self.avg_pool(x)
             # Two different branches of ECA module
              y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
             # Multi-scale information fusion
              y = self.sigmoid(y)
             return x * y.expand_as(x)
  
 
  • ChannelAttention


      class ChannelAttention(nn.Module):
         def __init__(self, in_planes, ratio=16):
             super(ChannelAttention, self).__init__()
              self.avg_pool = nn.AdaptiveAvgPool2d(1)
              self.max_pool = nn.AdaptiveMaxPool2d(1)
              self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
              self.relu1 = nn.LeakyReLU(negative_slope=0.01, inplace=False)
              self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)
              self.sigmoid = nn.Sigmoid()
         def forward(self, x):
              avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
              max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
              out = avg_out + max_out
             return self.sigmoid(out)
  
 
  •  ConvBN


      class ConvBN(nn.Sequential):
         def __init__(self, in_planes, out_planes, kernel_size, stride=1, groups=1):
             if not isinstance(kernel_size, int):
                  padding = [(i - 1) // 2 for i in kernel_size]
             else:
                  padding = (kernel_size - 1) // 2
             super(ConvBN, self).__init__(OrderedDict([
                  ('conv', nn.Conv2d(in_planes, out_planes, kernel_size, stride,
                                     padding=padding, groups=groups, bias=False)),
                  ('bn', nn.BatchNorm2d(out_planes)),
                 #('Mish', Mish())
                  ('Mish', nn.LeakyReLU(negative_slope=0.3, inplace=False))
              ]))
  
 
  • ResBlock

    
            class ResBlock(nn.Module):
               """
             Sequential residual blocks each of which consists of \
             two convolution layers.
             Args:
             ch (int): number of input and output channels.
             nblocks (int): number of residual blocks.
             shortcut (bool): if True, residual tensor addition is enabled.
             """
               def __init__(self, ch, nblocks=1, shortcut=True):
                   super().__init__()
                    self.shortcut = shortcut
                    self.module_list = nn.ModuleList()
                   for i in range(nblocks):
                        resblock_one = nn.ModuleList()
                        resblock_one.append(ConvBN(ch, ch, 1))
                        resblock_one.append(Mish())
                        resblock_one.append(ConvBN(ch, ch, 3))
                        resblock_one.append(Mish())
                        self.module_list.append(resblock_one)
               def forward(self, x):
                   for module in self.module_list:
                        h = x
                       for res in module:
                            h = res(h)
                        x = x + h if self.shortcut else h
                   return x
        
       

     

 

 

 

 

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/113103089

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。