总结几个好用的CNN模块(Pytorch)
【摘要】
总结几个比较好的CNN模块。
SEBlock
代码:
class SEBlock(nn.Module): def __init__(self, input_channels, internal_neurons): &...
总结几个比较好的CNN模块。
代码:
-
class SEBlock(nn.Module):
-
-
-
-
def __init__(self, input_channels, internal_neurons):
-
-
super(SEBlock, self).__init__()
-
-
self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1,
-
-
bias=True, padding_mode='same')
-
-
self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1,
-
-
bias=True, padding_mode='same')
-
-
-
-
def forward(self, inputs):
-
-
x = F.avg_pool2d(inputs, kernel_size=inputs.size(3))
-
-
x = self.down(x)
-
-
x = F.leaky_relu(x)
-
-
x = self.up(x)
-
-
x = F.sigmoid(x)
-
-
x = x.repeat(1, 1, inputs.size(2), inputs.size(3))
-
-
return inputs * x
代码
-
class CropLayer(nn.Module):
-
-
-
-
# E.g., (-1, 0) means this layer should crop the first and last rows of the feature map. And (0, -1) crops the first and last columns
-
-
def __init__(self, crop_set):
-
-
super(CropLayer, self).__init__()
-
-
self.rows_to_crop = - crop_set[0]
-
-
self.cols_to_crop = - crop_set[1]
-
-
assert self.rows_to_crop >= 0
-
-
assert self.cols_to_crop >= 0
-
-
-
-
def forward(self, input):
-
-
if self.rows_to_crop == 0 and self.cols_to_crop == 0:
-
-
return input
-
-
elif self.rows_to_crop > 0 and self.cols_to_crop == 0:
-
-
return input[:, :, self.rows_to_crop:-self.rows_to_crop, :]
-
-
elif self.rows_to_crop == 0 and self.cols_to_crop > 0:
-
-
return input[:, :, :, self.cols_to_crop:-self.cols_to_crop]
-
-
else:
-
-
return input[:, :, self.rows_to_crop:-self.rows_to_crop, self.cols_to_crop:-self.cols_to_crop]
-
-
class ACBlock(nn.Module):
-
-
-
-
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=1, dilation=1, groups=1,
-
-
padding_mode='same', deploy=False,
-
-
use_affine=True, reduce_gamma=False, use_last_bn=False, gamma_init=None):
-
-
super(ACBlock, self).__init__()
-
-
self.deploy = deploy
-
-
if deploy:
-
-
self.fused_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
-
-
kernel_size=(kernel_size, kernel_size), stride=stride,
-
-
padding=padding, dilation=dilation, groups=groups, bias=True,
-
-
padding_mode=padding_mode)
-
-
else:
-
-
self.square_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
-
-
kernel_size=(kernel_size, kernel_size), stride=stride,
-
-
padding=padding, dilation=dilation, groups=groups, bias=False,
-
-
padding_mode=padding_mode)
-
-
self.square_bn = nn.BatchNorm2d(num_features=out_channels, affine=use_affine)
-
-
-
-
center_offset_from_origin_border = padding - kernel_size // 2
-
-
ver_pad_or_crop = (padding, center_offset_from_origin_border)
-
-
hor_pad_or_crop = (center_offset_from_origin_border, padding)
-
-
if center_offset_from_origin_border >= 0:
-
-
self.ver_conv_crop_layer = nn.Identity()
-
-
ver_conv_padding = ver_pad_or_crop
-
-
self.hor_conv_crop_layer = nn.Identity()
-
-
hor_conv_padding = hor_pad_or_crop
-
-
else:
-
-
self.ver_conv_crop_layer = CropLayer(crop_set=ver_pad_or_crop)
-
-
ver_conv_padding = (0, 0)
-
-
self.hor_conv_crop_layer = CropLayer(crop_set=hor_pad_or_crop)
-
-
hor_conv_padding = (0, 0)
-
-
self.ver_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(kernel_size, 1),
-
-
stride=stride,
-
-
padding=ver_conv_padding, dilation=dilation, groups=groups, bias=False,
-
-
padding_mode=padding_mode)
-
-
-
-
self.hor_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(1, kernel_size),
-
-
stride=stride,
-
-
padding=hor_conv_padding, dilation=dilation, groups=groups, bias=False,
-
-
padding_mode=padding_mode)
-
-
self.ver_bn = nn.BatchNorm2d(num_features=out_channels, affine=use_affine)
-
-
self.hor_bn = nn.BatchNorm2d(num_features=out_channels, affine=use_affine)
-
-
-
-
if reduce_gamma:
-
-
assert not use_last_bn
-
-
self.init_gamma(1.0 / 3)
-
-
-
-
if use_last_bn:
-
-
assert not reduce_gamma
-
-
self.last_bn = nn.BatchNorm2d(num_features=out_channels, affine=True)
-
-
-
-
if gamma_init is not None:
-
-
assert not reduce_gamma
-
-
self.init_gamma(gamma_init)
-
-
-
-
def init_gamma(self, gamma_value):
-
-
init.constant_(self.square_bn.weight, gamma_value)
-
-
init.constant_(self.ver_bn.weight, gamma_value)
-
-
init.constant_(self.hor_bn.weight, gamma_value)
-
-
print('init gamma of square, ver and hor as ', gamma_value)
-
-
-
-
def single_init(self):
-
-
init.constant_(self.square_bn.weight, 1.0)
-
-
init.constant_(self.ver_bn.weight, 0.0)
-
-
init.constant_(self.hor_bn.weight, 0.0)
-
-
print('init gamma of square as 1, ver and hor as 0')
-
-
-
-
def forward(self, input):
-
-
if self.deploy:
-
-
return self.fused_conv(input)
-
-
else:
-
-
square_outputs = self.square_conv(input)
-
-
square_outputs = self.square_bn(square_outputs)
-
-
vertical_outputs = self.ver_conv_crop_layer(input)
-
-
vertical_outputs = self.ver_conv(vertical_outputs)
-
-
vertical_outputs = self.ver_bn(vertical_outputs)
-
-
horizontal_outputs = self.hor_conv_crop_layer(input)
-
-
horizontal_outputs = self.hor_conv(horizontal_outputs)
-
-
horizontal_outputs = self.hor_bn(horizontal_outputs)
-
-
result = square_outputs + vertical_outputs + horizontal_outputs
-
-
if hasattr(self, 'last_bn'):
-
-
return self.last_bn(result)
-
-
return result
-
class eca_layer(nn.Module):
-
"""Constructs a ECA module.
-
-
Args:
-
channel: Number of channels of the input feature map
-
k_size: Adaptive selection of kernel size
-
"""
-
def __init__(self, channel, k_size=3):
-
super(eca_layer, self).__init__()
-
self.avg_pool = nn.AdaptiveAvgPool2d(1)
-
self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
-
self.sigmoid = nn.Sigmoid()
-
-
def forward(self, x):
-
# x: input features with shape [b, c, h, w]
-
b, c, h, w = x.size()
-
-
# feature descriptor on the global spatial information
-
y = self.avg_pool(x)
-
-
# Two different branches of ECA module
-
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
-
-
# Multi-scale information fusion
-
y = self.sigmoid(y)
-
-
return x * y.expand_as(x)
-
class ChannelAttention(nn.Module):
-
def __init__(self, in_planes, ratio=16):
-
super(ChannelAttention, self).__init__()
-
self.avg_pool = nn.AdaptiveAvgPool2d(1)
-
self.max_pool = nn.AdaptiveMaxPool2d(1)
-
self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
-
self.relu1 = nn.LeakyReLU(negative_slope=0.01, inplace=False)
-
self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)
-
-
self.sigmoid = nn.Sigmoid()
-
-
def forward(self, x):
-
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
-
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
-
out = avg_out + max_out
-
return self.sigmoid(out)
-
class ConvBN(nn.Sequential):
-
def __init__(self, in_planes, out_planes, kernel_size, stride=1, groups=1):
-
if not isinstance(kernel_size, int):
-
padding = [(i - 1) // 2 for i in kernel_size]
-
else:
-
padding = (kernel_size - 1) // 2
-
super(ConvBN, self).__init__(OrderedDict([
-
('conv', nn.Conv2d(in_planes, out_planes, kernel_size, stride,
-
padding=padding, groups=groups, bias=False)),
-
('bn', nn.BatchNorm2d(out_planes)),
-
#('Mish', Mish())
-
('Mish', nn.LeakyReLU(negative_slope=0.3, inplace=False))
-
]))
-
ResBlock
-
class ResBlock(nn.Module):
-
"""
-
Sequential residual blocks each of which consists of \
-
two convolution layers.
-
Args:
-
ch (int): number of input and output channels.
-
nblocks (int): number of residual blocks.
-
shortcut (bool): if True, residual tensor addition is enabled.
-
"""
-
-
def __init__(self, ch, nblocks=1, shortcut=True):
-
super().__init__()
-
self.shortcut = shortcut
-
self.module_list = nn.ModuleList()
-
for i in range(nblocks):
-
resblock_one = nn.ModuleList()
-
resblock_one.append(ConvBN(ch, ch, 1))
-
resblock_one.append(Mish())
-
resblock_one.append(ConvBN(ch, ch, 3))
-
resblock_one.append(Mish())
-
self.module_list.append(resblock_one)
-
-
def forward(self, x):
-
for module in self.module_list:
-
h = x
-
for res in module:
-
h = res(h)
-
x = x + h if self.shortcut else h
-
return x
-
文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。
原文链接:wanghao.blog.csdn.net/article/details/113103089
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)