【图像分类】实战——使用EfficientNetV2实现图像分类(Pytorch)
目录
摘要
这几天学习了EfficientNetV2,对论文做了翻译,并复现了论文的代码。
论文翻译:【图像分类】 EfficientNetV2:更快、更小、更强——论文翻译_AI浩-CSDN博客
代码复现:【图像分类】用通俗易懂代码的复现EfficientNetV2,入门的绝佳选择(pytorch)_AI浩-CSDN博客
对EfficientNetV2想要了解的可以查看上面的文章,这篇文章着重介绍如何使用EfficientNetV2实现图像分类。Loss函数采用CrossEntropyLoss,可以通过更改最后一层的全连接方便实现二分类和多分类。数据集采用经典的猫狗大战数据集,做二分类的实现。
数据集地址:链接:https://pan.baidu.com/s/1kqhVPOqV5vklYYIFVAzAAA
提取码:3ch6
新建项目
新建一个图像分类的项目,在项目的跟目录新建文件夹model,用于存放EfficientNetV2的模型代码,新建EfficientNetV2.py,将【图像分类】用通俗易懂代码的复现EfficientNetV2,入门的绝佳选择(pytorch)_AI浩-CSDN博客 复现的代码复制到里面,然后在model文件夹新建__init__.py空文件,model的目录结构如下:
在项目的根目录新建train.py,然后在里面写训练代码。
导入所需要的库
-
import torch.optim as optim
-
import torch
-
import torch.nn as nn
-
import torch.nn.parallel
-
import torch.optim
-
import torch.utils.data
-
import torch.utils.data.distributed
-
import torchvision.transforms as transforms
-
import torchvision.datasets as datasets
-
from torch.autograd import Variable
-
from model.EfficientNetv2 import efficientnetv2_s
设置全局参数
设置BatchSize、学习率和epochs,判断是否有cuda环境,如果没有设置为cpu。
-
# 设置全局参数
-
modellr = 1e-4
-
BATCH_SIZE = 64
-
EPOCHS = 20
-
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
图像预处理
在做图像与处理时,train数据集的transform和验证集的transform分开做,train的图像处理出了resize和归一化之外,还可以设置图像的增强,比如旋转、随机擦除等一系列的操作,验证集则不需要做图像增强,另外不要盲目的做增强,不合理的增强手段很可能会带来负作用,甚至出现Loss不收敛的情况。
-
# 数据预处理
-
-
transform = transforms.Compose([
-
transforms.Resize((224, 224)),
-
transforms.ToTensor(),
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
-
-
])
-
transform_test = transforms.Compose([
-
transforms.Resize((224, 224)),
-
transforms.ToTensor(),
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
-
])
读取数据
使用Pytorch的默认方式读取数据。数据的目录如下图:
训练集,取了猫狗大战数据集中,猫狗图像各一万张,剩余的放到验证集中。
-
# 读取数据
-
dataset_train = datasets.ImageFolder('data/train', transform)
-
print(dataset_train.imgs)
-
# 对应文件夹的label
-
print(dataset_train.class_to_idx)
-
dataset_test = datasets.ImageFolder('data/val', transform_test)
-
# 对应文件夹的label
-
print(dataset_test.class_to_idx)
-
-
# 导入数据
-
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
-
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
设置模型
使用CrossEntropyLoss作为loss,模型采用efficientnetv2_s,由于没有Pytorch的预训练模型,我们只能从头开始训练。更改最后一层的全连接,将类别设置为2,然后将模型放到DEVICE。优化器选用Adam。
-
# 实例化模型并且移动到GPU
-
criterion = nn.CrossEntropyLoss()
-
model = efficientnetv2_s()
-
num_ftrs = model.classifier.in_features
-
model.classifier = nn.Linear(num_ftrs, 2)
-
model.to(DEVICE)
-
# 选择简单暴力的Adam优化器,学习率调低
-
optimizer = optim.Adam(model.parameters(), lr=modellr)
-
-
-
def adjust_learning_rate(optimizer, epoch):
-
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
-
modellrnew = modellr * (0.1 ** (epoch // 50))
-
print("lr:", modellrnew)
-
for param_group in optimizer.param_groups:
-
param_group['lr'] = modellrnew
-
-
设置训练和验证
-
# 定义训练过程
-
-
def train(model, device, train_loader, optimizer, epoch):
-
model.train()
-
sum_loss = 0
-
total_num = len(train_loader.dataset)
-
print(total_num, len(train_loader))
-
for batch_idx, (data, target) in enumerate(train_loader):
-
data, target = Variable(data).to(device), Variable(target).to(device)
-
output = model(data)
-
loss = criterion(output, target)
-
optimizer.zero_grad()
-
loss.backward()
-
optimizer.step()
-
print_loss = loss.data.item()
-
sum_loss += print_loss
-
if (batch_idx + 1) % 50 == 0:
-
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
-
epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
-
100. * (batch_idx + 1) / len(train_loader), loss.item()))
-
ave_loss = sum_loss / len(train_loader)
-
print('epoch:{},loss:{}'.format(epoch, ave_loss))
-
#验证过程
-
def val(model, device, test_loader):
-
model.eval()
-
test_loss = 0
-
correct = 0
-
total_num = len(test_loader.dataset)
-
print(total_num, len(test_loader))
-
with torch.no_grad():
-
for data, target in test_loader:
-
data, target = Variable(data).to(device), Variable(target).to(device)
-
output = model(data)
-
loss = criterion(output, target)
-
_, pred = torch.max(output.data, 1)
-
correct += torch.sum(pred == target)
-
print_loss = loss.data.item()
-
test_loss += print_loss
-
correct = correct.data.item()
-
acc = correct / total_num
-
avgloss = test_loss / len(test_loader)
-
print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
-
avgloss, correct, len(test_loader.dataset), 100 * acc))
-
-
-
# 训练
-
-
for epoch in range(1, EPOCHS + 1):
-
adjust_learning_rate(optimizer, epoch)
-
train(model, DEVICE, train_loader, optimizer, epoch)
-
val(model, DEVICE, test_loader)
-
torch.save(model, 'model.pth')
完成上面的代码后就可以开始训练,点击run开始训练,如下图:
验证
测试集存放的目录如下图:
第一步 定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!我们在训练时,cat类别是0,dog类别是1,所以我定义classes为(cat,dog)。
第二步 定义transforms,transforms和验证集的transforms一样即可,别做数据增强。
第三步 加载model,并将模型放在DEVICE里,
第四步 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。
-
import torch.utils.data.distributed
-
import torchvision.transforms as transforms
-
-
from torch.autograd import Variable
-
import os
-
from PIL import Image
-
-
classes = ('cat', 'dog')
-
-
transform_test = transforms.Compose([
-
transforms.Resize((224, 224)),
-
transforms.ToTensor(),
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
-
])
-
-
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
-
model = torch.load("model.pth")
-
model.eval()
-
model.to(DEVICE)
-
path='data/test/'
-
testList=os.listdir(path)
-
for file in testList:
-
img=Image.open(path+file)
-
img=transform_test(img)
-
img.unsqueeze_(0)
-
img = Variable(img).to(DEVICE)
-
out=model(img)
-
# Predict
-
_, pred = torch.max(out.data, 1)
-
print('Image Name:{},predict:{}'.format(file,classes[pred.data.item()]))
-
运行结果:
其实在读取数据,也可以巧妙的用datasets.ImageFolder,下面我们就用datasets.ImageFolder实现对图片的预测。改一下test数据集的路径,在test文件夹外面再加一层文件件,取名为dataset,如下图所示:
然后修改读取图片的方式。代码如下:
-
import torch.utils.data.distributed
-
import torchvision.transforms as transforms
-
import torchvision.datasets as datasets
-
from torch.autograd import Variable
-
-
classes = ('cat', 'dog')
-
transform_test = transforms.Compose([
-
transforms.Resize((224, 224)),
-
transforms.ToTensor(),
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
-
])
-
-
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
-
model = torch.load("model.pth")
-
model.eval()
-
model.to(DEVICE)
-
-
dataset_test = datasets.ImageFolder('data/datatest', transform_test)
-
print(len(dataset_test))
-
# 对应文件夹的label
-
-
for index in range(len(dataset_test)):
-
item = dataset_test[index]
-
img, label = item
-
img.unsqueeze_(0)
-
data = Variable(img).to(DEVICE)
-
output = model(data)
-
_, pred = torch.max(output.data, 1)
-
print('Image Name:{},predict:{}'.format(dataset_test.imgs[index][0], classes[pred.data.item()]))
-
index += 1
-
完整代码:
train.py
-
import torch.optim as optim
-
import torch
-
import torch.nn as nn
-
import torch.nn.parallel
-
import torch.optim
-
import torch.utils.data
-
import torch.utils.data.distributed
-
import torchvision.transforms as transforms
-
import torchvision.datasets as datasets
-
from torch.autograd import Variable
-
from model.EfficientNetv2 import efficientnetv2_s
-
# 设置全局参数
-
modellr = 1e-4
-
BATCH_SIZE = 32
-
EPOCHS = 50
-
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
-
-
# 数据预处理
-
-
transform = transforms.Compose([
-
transforms.Resize((224, 224)),
-
transforms.ToTensor(),
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
-
-
])
-
transform_test = transforms.Compose([
-
transforms.Resize((224, 224)),
-
transforms.ToTensor(),
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
-
])
-
# 读取数据
-
dataset_train = datasets.ImageFolder('data/train', transform)
-
print(dataset_train.imgs)
-
# 对应文件夹的label
-
print(dataset_train.class_to_idx)
-
dataset_test = datasets.ImageFolder('data/val', transform_test)
-
# 对应文件夹的label
-
print(dataset_test.class_to_idx)
-
-
# 导入数据
-
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
-
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
-
-
-
# 实例化模型并且移动到GPU
-
criterion = nn.CrossEntropyLoss()
-
model = efficientnetv2_s()
-
num_ftrs = model.classifier.in_features
-
model.classifier = nn.Linear(num_ftrs, 2)
-
model.to(DEVICE)
-
# 选择简单暴力的Adam优化器,学习率调低
-
optimizer = optim.Adam(model.parameters(), lr=modellr)
-
-
-
def adjust_learning_rate(optimizer, epoch):
-
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
-
modellrnew = modellr * (0.1 ** (epoch // 50))
-
print("lr:", modellrnew)
-
for param_group in optimizer.param_groups:
-
param_group['lr'] = modellrnew
-
-
-
# 定义训练过程
-
-
def train(model, device, train_loader, optimizer, epoch):
-
model.train()
-
sum_loss = 0
-
total_num = len(train_loader.dataset)
-
print(total_num, len(train_loader))
-
for batch_idx, (data, target) in enumerate(train_loader):
-
data, target = Variable(data).to(device), Variable(target).to(device)
-
output = model(data)
-
loss = criterion(output, target)
-
optimizer.zero_grad()
-
loss.backward()
-
optimizer.step()
-
print_loss = loss.data.item()
-
sum_loss += print_loss
-
if (batch_idx + 1) % 50 == 0:
-
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
-
epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
-
100. * (batch_idx + 1) / len(train_loader), loss.item()))
-
ave_loss = sum_loss / len(train_loader)
-
print('epoch:{},loss:{}'.format(epoch, ave_loss))
-
#验证过程
-
def val(model, device, test_loader):
-
model.eval()
-
test_loss = 0
-
correct = 0
-
total_num = len(test_loader.dataset)
-
print(total_num, len(test_loader))
-
with torch.no_grad():
-
for data, target in test_loader:
-
data, target = Variable(data).to(device), Variable(target).to(device)
-
output = model(data)
-
loss = criterion(output, target)
-
_, pred = torch.max(output.data, 1)
-
correct += torch.sum(pred == target)
-
print_loss = loss.data.item()
-
test_loss += print_loss
-
correct = correct.data.item()
-
acc = correct / total_num
-
avgloss = test_loss / len(test_loader)
-
print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
-
avgloss, correct, len(test_loader.dataset), 100 * acc))
-
-
-
# 训练
-
-
for epoch in range(1, EPOCHS + 1):
-
adjust_learning_rate(optimizer, epoch)
-
train(model, DEVICE, train_loader, optimizer, epoch)
-
val(model, DEVICE, test_loader)
-
torch.save(model, 'model.pth')
test1.py
-
-
import torch.utils.data.distributed
-
import torchvision.transforms as transforms
-
-
from torch.autograd import Variable
-
import os
-
from PIL import Image
-
-
classes = ('cat', 'dog')
-
-
transform_test = transforms.Compose([
-
transforms.Resize((224, 224)),
-
transforms.ToTensor(),
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
-
])
-
-
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
-
model = torch.load("model.pth")
-
model.eval()
-
model.to(DEVICE)
-
path='data/test/'
-
testList=os.listdir(path)
-
for file in testList:
-
img=Image.open(path+file)
-
img=transform_test(img)
-
img.unsqueeze_(0)
-
img = Variable(img).to(DEVICE)
-
out=model(img)
-
# Predict
-
_, pred = torch.max(out.data, 1)
-
print('Image Name:{},predict:{}'.format(file,classes[pred.data.item()]))
-
test2.py
-
import torch.utils.data.distributed
-
import torchvision.transforms as transforms
-
import torchvision.datasets as datasets
-
from torch.autograd import Variable
-
-
classes = ('cat', 'dog')
-
transform_test = transforms.Compose([
-
transforms.Resize((224, 224)),
-
transforms.ToTensor(),
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
-
])
-
-
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
-
model = torch.load("model.pth")
-
model.eval()
-
model.to(DEVICE)
-
-
dataset_test = datasets.ImageFolder('data/datatest', transform_test)
-
print(len(dataset_test))
-
# 对应文件夹的label
-
-
for index in range(len(dataset_test)):
-
item = dataset_test[index]
-
img, label = item
-
img.unsqueeze_(0)
-
data = Variable(img).to(DEVICE)
-
output = model(data)
-
_, pred = torch.max(output.data, 1)
-
print('Image Name:{},predict:{}'.format(dataset_test.imgs[index][0], classes[pred.data.item()]))
-
index += 1
文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。
原文链接:wanghao.blog.csdn.net/article/details/117535310
- 点赞
- 收藏
- 关注作者
评论(0)