复现ResNeXt50和Reset50 pytorch代码
【摘要】
Reset50和ResNeXt50网络图
Reset50 101 152 pytorch代码复现
import torchimport torch.nn as nnimport torchvisionimport numpy as np print("PyTorch Version: ",torch.__version__)pr...
Reset50和ResNeXt50网络图
Reset50 101 152 pytorch代码复现
-
import torch
-
import torch.nn as nn
-
import torchvision
-
import numpy as np
-
-
print("PyTorch Version: ",torch.__version__)
-
print("Torchvision Version: ",torchvision.__version__)
-
-
__all__ = ['ResNet50', 'ResNet101','ResNet152']
-
-
def Conv1(in_planes, places, stride=2):
-
return nn.Sequential(
-
nn.Conv2d(in_channels=in_planes,out_channels=places,kernel_size=7,stride=stride,padding=3, bias=False),
-
nn.BatchNorm2d(places),
-
nn.ReLU(inplace=True),
-
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
-
)
-
-
class Bottleneck(nn.Module):
-
def __init__(self,in_places,places, stride=1,downsampling=False, expansion = 4):
-
super(Bottleneck,self).__init__()
-
self.expansion = expansion
-
self.downsampling = downsampling
-
-
self.bottleneck = nn.Sequential(
-
nn.Conv2d(in_channels=in_places,out_channels=places,kernel_size=1,stride=1, bias=False),
-
nn.BatchNorm2d(places),
-
nn.ReLU(inplace=True),
-
nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False),
-
nn.BatchNorm2d(places),
-
nn.ReLU(inplace=True),
-
nn.Conv2d(in_channels=places, out_channels=places*self.expansion, kernel_size=1, stride=1, bias=False),
-
nn.BatchNorm2d(places*self.expansion),
-
)
-
-
if self.downsampling:
-
self.downsample = nn.Sequential(
-
nn.Conv2d(in_channels=in_places, out_channels=places*self.expansion, kernel_size=1, stride=stride, bias=False),
-
nn.BatchNorm2d(places*self.expansion)
-
)
-
self.relu = nn.ReLU(inplace=True)
-
def forward(self, x):
-
residual = x
-
out = self.bottleneck(x)
-
-
if self.downsampling:
-
residual = self.downsample(x)
-
-
out += residual
-
out = self.relu(out)
-
return out
-
-
class ResNet(nn.Module):
-
def __init__(self,blocks, num_classes=1000, expansion = 4):
-
super(ResNet,self).__init__()
-
self.expansion = expansion
-
-
self.conv1 = Conv1(in_planes = 3, places= 64)
-
-
self.layer1 = self.make_layer(in_places = 64, places= 64, block=blocks[0], stride=1)
-
self.layer2 = self.make_layer(in_places = 256,places=128, block=blocks[1], stride=2)
-
self.layer3 = self.make_layer(in_places=512,places=256, block=blocks[2], stride=2)
-
self.layer4 = self.make_layer(in_places=1024,places=512, block=blocks[3], stride=2)
-
-
self.avgpool = nn.AvgPool2d(7, stride=1)
-
self.fc = nn.Linear(2048,num_classes)
-
-
for m in self.modules():
-
if isinstance(m, nn.Conv2d):
-
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
-
elif isinstance(m, nn.BatchNorm2d):
-
nn.init.constant_(m.weight, 1)
-
nn.init.constant_(m.bias, 0)
-
-
def make_layer(self, in_places, places, block, stride):
-
layers = []
-
layers.append(Bottleneck(in_places, places,stride, downsampling =True))
-
for i in range(1, block):
-
layers.append(Bottleneck(places*self.expansion, places))
-
-
return nn.Sequential(*layers)
-
-
-
def forward(self, x):
-
x = self.conv1(x)
-
-
x = self.layer1(x)
-
x = self.layer2(x)
-
x = self.layer3(x)
-
x = self.layer4(x)
-
-
x = self.avgpool(x)
-
x = x.view(x.size(0), -1)
-
x = self.fc(x)
-
return x
-
-
def ResNet50():
-
return ResNet([3, 4, 6, 3])
-
-
def ResNet101():
-
return ResNet([3, 4, 23, 3])
-
-
def ResNet152():
-
return ResNet([3, 8, 36, 3])
-
-
-
if __name__=='__main__':
-
#model = torchvision.models.resnet50()
-
model = ResNet50()
-
print(model)
-
-
input = torch.randn(1, 3, 224, 224)
-
out = model(input)
-
print(out.shape)
ResNeXt50 pytorch代码
-
import torch
-
import torch.nn as nn
-
-
class Block(nn.Module):
-
def __init__(self,in_channels, out_channels, stride=1, is_shortcut=False):
-
super(Block,self).__init__()
-
self.relu = nn.ReLU(inplace=True)
-
self.is_shortcut = is_shortcut
-
self.conv1 = nn.Sequential(
-
nn.Conv2d(in_channels, out_channels // 2, kernel_size=1,stride=stride,bias=False),
-
nn.BatchNorm2d(out_channels // 2),
-
nn.ReLU()
-
)
-
self.conv2 = nn.Sequential(
-
nn.Conv2d(out_channels // 2, out_channels // 2, kernel_size=3, stride=1, padding=1, groups=32,
-
bias=False),
-
nn.BatchNorm2d(out_channels // 2),
-
nn.ReLU()
-
)
-
self.conv3 = nn.Sequential(
-
nn.Conv2d(out_channels // 2, out_channels, kernel_size=1,stride=1,bias=False),
-
nn.BatchNorm2d(out_channels),
-
)
-
if is_shortcut:
-
self.shortcut = nn.Sequential(
-
nn.Conv2d(in_channels,out_channels,kernel_size=1,stride=stride,bias=1),
-
nn.BatchNorm2d(out_channels)
-
)
-
def forward(self, x):
-
x_shortcut = x
-
x = self.conv1(x)
-
x = self.conv2(x)
-
x = self.conv3(x)
-
if self.is_shortcut:
-
x_shortcut = self.shortcut(x_shortcut)
-
x = x + x_shortcut
-
x = self.relu(x)
-
return x
-
-
class Resnext(nn.Module):
-
def __init__(self,num_classes,layer=[3,4,6,3]):
-
super(Resnext,self).__init__()
-
self.conv1 = nn.Sequential(
-
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
-
nn.BatchNorm2d(64),
-
nn.ReLU(),
-
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
-
)
-
self.conv2 = self._make_layer(64,256,1,num=layer[0])
-
self.conv3 = self._make_layer(256,512,2,num=layer[1])
-
self.conv4 = self._make_layer(512,1024,2,num=layer[2])
-
self.conv5 = self._make_layer(1024,2048,2,num=layer[3])
-
self.global_average_pool = nn.AvgPool2d(kernel_size=7, stride=1)
-
self.fc = nn.Linear(2048,num_classes)
-
def forward(self, x):
-
x = self.conv1(x)
-
x = self.conv2(x)
-
x = self.conv3(x)
-
x = self.conv4(x)
-
x = self.conv5(x)
-
x = self.global_average_pool(x)
-
x = torch.flatten(x,1)
-
x = self.fc(x)
-
return x
-
def _make_layer(self,in_channels,out_channels,stride,num):
-
layers = []
-
block_1=Block(in_channels, out_channels,stride=stride,is_shortcut=True)
-
layers.append(block_1)
-
for i in range(1, num):
-
layers.append(Block(out_channels,out_channels,stride=1,is_shortcut=False))
-
return nn.Sequential(*layers)
-
-
-
net = Resnext(10)
-
x = torch.rand((10, 3, 224, 224))
-
for name,layer in net.named_children():
-
if name != "fc":
-
x = layer(x)
-
print(name, 'output shaoe:', x.shape)
-
else:
-
x = x.view(x.size(0), -1)
-
x = layer(x)
-
print(name, 'output shaoe:', x.shape)
文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。
原文链接:wanghao.blog.csdn.net/article/details/115477386
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)