yolov5 导出LibTorch模型(CPU和GPU)
【摘要】
官方给出的是CPU:
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formatsUsage: $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weigh...
官方给出的是CPU:
-
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
-
-
Usage:
-
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
-
"""
-
-
import argparse
-
-
import torch
-
import torch.nn as nn
-
-
import models
-
from models.experimental import attempt_load
-
from utils.activations import Hardswish
-
from utils.general import set_logging
-
-
if __name__ == '__main__':
-
parser = argparse.ArgumentParser()
-
parser.add_argument('--weights', type=str, default='../runs/exp7/weights/best.pt', help='weights path') # from yolov5/models/
-
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
-
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
-
opt = parser.parse_args()
-
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
-
print(opt)
-
set_logging()
-
-
# Input
-
img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
-
-
# Load PyTorch model
-
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
-
-
# Update model
-
for k, m in model.named_modules():
-
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
-
if isinstance(m, models.common.Conv) and isinstance(m.act, nn.Hardswish):
-
m.act = Hardswish() # assign activation
-
# if isinstance(m, models.yolo.Detect):
-
# m.forward = m.forward_export # assign forward (optional)
-
model.model[-1].export = True # set Detect() layer export=True
-
y = model(img) # dry run
-
-
# TorchScript export
-
try:
-
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
-
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
-
ts = torch.jit.trace(model, img)
-
ts.save(f)
-
print('TorchScript export success, saved as %s' % f)
-
except Exception as e:
-
print('TorchScript export failure: %s' % e)
GPU
-
-
import argparse
-
-
import torch
-
import torch.nn as nn
-
-
import models
-
from models.experimental import attempt_load
-
from utils.activations import Hardswish
-
from utils.general import set_logging
-
-
if __name__ == '__main__':
-
parser = argparse.ArgumentParser()
-
parser.add_argument('--weights', type=str, default='../runs/exp7/weights/best.pt', help='weights path') # from yolov5/models/
-
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
-
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
-
opt = parser.parse_args()
-
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
-
print(opt)
-
set_logging()
-
-
# Input
-
img = torch.zeros((opt.batch_size, 3, *opt.img_size)).to(device='cuda') # image size(1,3,320,192) iDetection
-
-
# Load PyTorch model
-
model = attempt_load(opt.weights, map_location=torch.device('cuda')) # load FP32 model
-
-
# Update model
-
for k, m in model.named_modules():
-
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
-
if isinstance(m, models.common.Conv) and isinstance(m.act, nn.Hardswish):
-
m.act = Hardswish() # assign activation
-
# if isinstance(m, models.yolo.Detect):
-
# m.forward = m.forward_export # assign forward (optional)
-
model.model[-1].export = True # set Detect() layer export=True
-
y = model(img) # dry run
-
-
# TorchScript export
-
try:
-
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
-
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
-
ts = torch.jit.trace(model, img)
-
ts.save(f)
-
print('TorchScript export success, saved as %s' % f)
-
except Exception as e:
-
print('TorchScript export failure: %s' % e)
文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。
原文链接:wanghao.blog.csdn.net/article/details/116117544
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)