Win10 Labelme标注数据转为YOLOV5 训练的数据集
【摘要】
将Labelme标注的数据复制到工程的根目录,并将其命名为LabelmeData。我的工程根目录是yolov5-master,如下图:
打开工程,在根目录新建LabelmeToYolov5.py。写入下面的代码
import osimport numpy as npimport jsonfrom glob import ...
- 将Labelme标注的数据复制到工程的根目录,并将其命名为LabelmeData。我的工程根目录是yolov5-master,如下图:
- 打开工程,在根目录新建LabelmeToYolov5.py。写入下面的代码
-
import os
-
import numpy as np
-
import json
-
from glob import glob
-
import cv2
-
from sklearn.model_selection import train_test_split
-
from os import getcwd
-
-
classes = ["aircraft", "oiltank"]
-
# 1.标签路径
-
labelme_path = "LabelmeData/"
-
isUseTest = True # 是否创建test集
-
# 3.获取待处理文件
-
files = glob(labelme_path + "*.json")
-
files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files]
-
print(files)
-
if isUseTest:
-
trainval_files, test_files = train_test_split(files, test_size=0.1, random_state=55)
-
else:
-
trainval_files = files
-
# split
-
train_files, val_files = train_test_split(trainval_files, test_size=0.1, random_state=55)
-
-
-
def convert(size, box):
-
dw = 1. / (size[0])
-
dh = 1. / (size[1])
-
x = (box[0] + box[1]) / 2.0 - 1
-
y = (box[2] + box[3]) / 2.0 - 1
-
w = box[1] - box[0]
-
h = box[3] - box[2]
-
x = x * dw
-
w = w * dw
-
y = y * dh
-
h = h * dh
-
return (x, y, w, h)
-
-
-
wd = getcwd()
-
print(wd)
-
-
-
def ChangeToYolo5(files, txt_Name):
-
if not os.path.exists('tmp/'):
-
os.makedirs('tmp/')
-
list_file = open('tmp/%s.txt' % (txt_Name), 'w')
-
for json_file_ in files:
-
json_filename = labelme_path + json_file_ + ".json"
-
imagePath = labelme_path + json_file_ + ".jpg"
-
list_file.write('%s/%s\n' % (wd, imagePath))
-
out_file = open('%s/%s.txt' % (labelme_path, json_file_), 'w')
-
json_file = json.load(open(json_filename, "r", encoding="utf-8"))
-
height, width, channels = cv2.imread(labelme_path + json_file_ + ".jpg").shape
-
for multi in json_file["shapes"]:
-
points = np.array(multi["points"])
-
xmin = min(points[:, 0]) if min(points[:, 0]) > 0 else 0
-
xmax = max(points[:, 0]) if max(points[:, 0]) > 0 else 0
-
ymin = min(points[:, 1]) if min(points[:, 1]) > 0 else 0
-
ymax = max(points[:, 1]) if max(points[:, 1]) > 0 else 0
-
label = multi["label"]
-
if xmax <= xmin:
-
pass
-
elif ymax <= ymin:
-
pass
-
else:
-
cls_id = classes.index(label)
-
b = (float(xmin), float(xmax), float(ymin), float(ymax))
-
bb = convert((width, height), b)
-
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
-
print(json_filename, xmin, ymin, xmax, ymax, cls_id)
-
-
-
ChangeToYolo5(train_files, "train")
-
ChangeToYolo5(val_files, "val")
-
ChangeToYolo5(test_files, "test")
-
'''
-
file1 = open("tmp/train.txt", "r")
-
file2 = open("tmp/val.txt", "r")
-
file_list1 = file1.readlines() # 将所有变量读入列表file_list1
-
-
file_list2 = file2.readlines() # 将所有变量读入列表file_list2
-
file3 = open("tmp/trainval.txt", "w")
-
for line in file_list1:
-
print(line)
-
file3.write(line)
-
for line in file_list2:
-
print(line)
-
file3.write(line)
-
'''
这段代码执行完成会在LabelmeData生成每个图片的txt标注数据,同时在tmp文件夹下面生成训练集、验证集和测试集的txt,txt记录的是图片的路径,为下一步生成YoloV5训练和测试用的数据集做准备。
- 在tmp文件夹新建makedata.py。执行完成后会在工程的根目录生成VOC数据集。
-
import shutil
-
import os
-
-
file_List = ["train", "val", "test"]
-
for file in file_List:
-
if not os.path.exists('../VOC/images/%s' % file):
-
os.makedirs('../VOC/images/%s' % file)
-
if not os.path.exists('../VOC/labels/%s' % file):
-
os.makedirs('../VOC/labels/%s' % file)
-
print(os.path.exists('../tmp/%s.txt' % file))
-
f = open('../tmp/%s.txt' % file, 'r')
-
lines = f.readlines()
-
for line in lines:
-
print(line)
-
line = "/".join(line.split('/')[-5:]).strip()
-
shutil.copy(line, "../VOC/images/%s" % file)
-
line = line.replace('jpg', 'txt')
-
shutil.copy(line, "../VOC/labels/%s/" % file)
运行结果如下:
文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。
原文链接:wanghao.blog.csdn.net/article/details/108865894
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)