Numpy实现Loss函数

举报
AI浩 发表于 2021/12/23 00:26:34 2021/12/23
【摘要】 from __future__ import division import numpy as np from mlfromscratch.utils import accuracy_score from...
from __future__ import division
import numpy as np
from mlfromscratch.utils import accuracy_score
from mlfromscratch.deep_learning.activation_functions import Sigmoid

class Loss(object):
    def loss(self, y_true, y_pred):
        return NotImplementedError()

    def gradient(self, y, y_pred):
        raise NotImplementedError()

    def acc(self, y, y_pred):
        return 0

class SquareLoss(Loss):
    def __init__(self): pass

    def loss(self, y, y_pred):
        return 0.5 * np.power((y - y_pred), 2)

    def gradient(self, y, y_pred):
        return -(y - y_pred)

class CrossEntropy(Loss):
    def __init__(self): pass

    def loss(self, y, p):
        # Avoid division by zero
        p = np.clip(p, 1e-15, 1 - 1e-15)
        return - y * np.log(p) - (1 - y) * np.log(1 - p)

    def acc(self, y, p):
        return accuracy_score(np.argmax(y, axis=1), np.argmax(p, axis=1))

    def gradient(self, y, p):
        # Avoid division by zero
        p = np.clip(p, 1e-15, 1 - 1e-15)
        return - (y / p) + (1 - y) / (1 - p)
  
 

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/120321869

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。