Numpy实现KNN

举报
AI浩 发表于 2021/12/22 22:28:46 2021/12/22
【摘要】 from __future__ import print_function, division import numpy as np from mlfromscratch.utils import euc...
from __future__ import print_function, division
import numpy as np
from mlfromscratch.utils import euclidean_distance

class KNN():
    """ K Nearest Neighbors classifier.

    Parameters:
    -----------
    k: int
        The number of closest neighbors that will determine the class of the 
        sample that we wish to predict.
    """
    def __init__(self, k=5):
        self.k = k

    def _vote(self, neighbor_labels):
        """ Return the most common class among the neighbor samples """
        counts = np.bincount(neighbor_labels.astype('int'))
        return counts.argmax()

    def predict(self, X_test, X_train, y_train):
        y_pred = np.empty(X_test.shape[0])
        # Determine the class of each sample
        for i, test_sample in enumerate(X_test):
            # Sort the training samples by their distance to the test sample and get the K nearest
            idx = np.argsort([euclidean_distance(test_sample, x) for x in X_train])[:self.k]
            # Extract the labels of the K nearest neighboring training samples
            k_nearest_neighbors = np.array([y_train[i] for i in idx])
            # Label sample as the most common class label
            y_pred[i] = self._vote(k_nearest_neighbors)

        return y_pred
        

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121558287

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。