Numpy实现MaxPooling2D(最大池化)和AveragePooling2D(平均池化)

举报
AI浩 发表于 2021/12/22 22:28:12 2021/12/22
【摘要】 class PoolingLayer(Layer): """A parent class of MaxPooling2D and AveragePooling2D """ def ...
class PoolingLayer(Layer):
    """A parent class of MaxPooling2D and AveragePooling2D
    """
    def __init__(self, pool_shape=(2, 2), stride=1, padding=0):
        self.pool_shape = pool_shape
        self.stride = stride
        self.padding = padding
        self.trainable = True

    def forward_pass(self, X, training=True):
        self.layer_input = X

        batch_size, channels, height, width = X.shape

        _, out_height, out_width = self.output_shape()

        X = X.reshape(batch_size*channels, 1, height, width)
        X_col = image_to_column(X, self.pool_shape, self.stride, self.padding)

        # MaxPool or AveragePool specific method
        output = self._pool_forward(X_col)

        output = output.reshape(out_height, out_width, batch_size, channels)
        output = output.transpose(2, 3, 0, 1)

        return output

    def backward_pass(self, accum_grad):
        batch_size, _, _, _ = accum_grad.shape
        channels, height, width = self.input_shape
        accum_grad = accum_grad.transpose(2, 3, 0, 1).ravel()

        # MaxPool or AveragePool specific method
        accum_grad_col = self._pool_backward(accum_grad)

        accum_grad = column_to_image(accum_grad_col, (batch_size * channels, 1, height, width), self.pool_shape, self.stride, 0)
        accum_grad = accum_grad.reshape((batch_size,) + self.input_shape)

        return accum_grad

    def output_shape(self):
        channels, height, width = self.input_shape
        out_height = (height - self.pool_shape[0]) / self.stride + 1
        out_width = (width - self.pool_shape[1]) / self.stride + 1
        assert out_height % 1 == 0
        assert out_width % 1 == 0
        return channels, int(out_height), int(out_width)


class MaxPooling2D(PoolingLayer):
    def _pool_forward(self, X_col):
        arg_max = np.argmax(X_col, axis=0).flatten()
        output = X_col[arg_max, range(arg_max.size)]
        self.cache = arg_max
        return output

    def _pool_backward(self, accum_grad):
        accum_grad_col = np.zeros((np.prod(self.pool_shape), accum_grad.size))
        arg_max = self.cache
        accum_grad_col[arg_max, range(accum_grad.size)] = accum_grad
        return accum_grad_col

class AveragePooling2D(PoolingLayer):
    def _pool_forward(self, X_col):
        output = np.mean(X_col, axis=0)
        return output

    def _pool_backward(self, accum_grad):
        accum_grad_col = np.zeros((np.prod(self.pool_shape), accum_grad.size))
        accum_grad_col[:, range(accum_grad.size)] = 1. / accum_grad_col.shape[0] * accum_grad
        return accum_grad_col



  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/120322102

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。