Numpy实现LDA
【摘要】
from __future__ import print_function, division
import numpy as np
from mlfromscratch.utils import cal...
from __future__ import print_function, division
import numpy as np
from mlfromscratch.utils import calculate_covariance_matrix, normalize, standardize
class LDA():
"""The Linear Discriminant Analysis classifier, also known as Fisher's linear discriminant.
Can besides from classification also be used to reduce the dimensionaly of the dataset.
"""
def __init__(self):
self.w = None
def transform(self, X, y):
self.fit(X, y)
# Project data onto vector
X_transform = X.dot(self.w)
return X_transform
def fit(self, X, y):
# Separate data by class
X1 = X[y == 0]
X2 = X[y == 1]
# Calculate the covariance matrices of the two datasets
cov1 = calculate_covariance_matrix(X1)
cov2 = calculate_covariance_matrix(X2)
cov_tot = cov1 + cov2
# Calculate the mean of the two datasets
mean1 = X1.mean(0)
mean2 = X2.mean(0)
mean_diff = np.atleast_1d(mean1 - mean2)
# Determine the vector which when X is projected onto it best separates the
# data by class. w = (mean1 - mean2) / (cov1 + cov2)
self.w = np.linalg.pinv(cov_tot).dot(mean_diff)
def predict(self, X):
y_pred = []
for sample in X:
h = sample.dot(self.w)
y = 1 * (h < 0)
y_pred.append(y)
return y_pred
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。
原文链接:wanghao.blog.csdn.net/article/details/121558295
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)