Numpy实现深度学习Model

举报
AI浩 发表于 2021/12/22 22:22:13 2021/12/22
【摘要】 from __future__ import print_function, division from terminaltables import AsciiTable import numpy as ...
from __future__ import print_function, division
from terminaltables import AsciiTable
import numpy as np
import progressbar
from mlfromscratch.utils import batch_iterator
from mlfromscratch.utils.misc import bar_widgets


class NeuralNetwork():
    """Neural Network. Deep Learning base model.

    Parameters:
    -----------
    optimizer: class
        The weight optimizer that will be used to tune the weights in order of minimizing
        the loss.
    loss: class
        Loss function used to measure the model's performance. SquareLoss or CrossEntropy.
    validation: tuple
        A tuple containing validation data and labels (X, y)
    """
    def __init__(self, optimizer, loss, validation_data=None):
        self.optimizer = optimizer
        self.layers = []
        self.errors = {"training": [], "validation": []}
        self.loss_function = loss()
        self.progressbar = progressbar.ProgressBar(widgets=bar_widgets)

        self.val_set = None
        if validation_data:
            X, y = validation_data
            self.val_set = {"X": X, "y": y}

    def set_trainable(self, trainable):
        """ Method which enables freezing of the weights of the network's layers. """
        for layer in self.layers:
            layer.trainable = trainable

    def add(self, layer):
        """ Method which adds a layer to the neural network """
        # If this is not the first layer added then set the input shape
        # to the output shape of the last added layer
        if self.layers:
            layer.set_input_shape(shape=self.layers[-1].output_shape())

        # If the layer has weights that needs to be initialized 
        if hasattr(layer, 'initialize'):
            layer.initialize(optimizer=self.optimizer)

        # Add layer to the network
        self.layers.append(layer)

    def test_on_batch(self, X, y):
        """ Evaluates the model over a single batch of samples """
        y_pred = self._forward_pass(X, training=False)
        loss = np.mean(self.loss_function.loss(y, y_pred))
        acc = self.loss_function.acc(y, y_pred)

        return loss, acc

    def train_on_batch(self, X, y):
        """ Single gradient update over one batch of samples """
        y_pred = self._forward_pass(X)
        loss = np.mean(self.loss_function.loss(y, y_pred))
        acc = self.loss_function.acc(y, y_pred)
        # Calculate the gradient of the loss function wrt y_pred
        loss_grad = self.loss_function.gradient(y, y_pred)
        # Backpropagate. Update weights
        self._backward_pass(loss_grad=loss_grad)

        return loss, acc

    def fit(self, X, y, n_epochs, batch_size):
        """ Trains the model for a fixed number of epochs """
        for _ in self.progressbar(range(n_epochs)):
            
            batch_error = []
            for X_batch, y_batch in batch_iterator(X, y, batch_size=batch_size):
                loss, _ = self.train_on_batch(X_batch, y_batch)
                batch_error.append(loss)

            self.errors["training"].append(np.mean(batch_error))

            if self.val_set is not None:
                val_loss, _ = self.test_on_batch(self.val_set["X"], self.val_set["y"])
                self.errors["validation"].append(val_loss)

        return self.errors["training"], self.errors["validation"]

    def _forward_pass(self, X, training=True):
        """ Calculate the output of the NN """
        layer_output = X
        for layer in self.layers:
            layer_output = layer.forward_pass(layer_output, training)

        return layer_output

    def _backward_pass(self, loss_grad):
        """ Propagate the gradient 'backwards' and update the weights in each layer """
        for layer in reversed(self.layers):
            loss_grad = layer.backward_pass(loss_grad)

    def summary(self, name="Model Summary"):
        # Print model name
        print (AsciiTable([[name]]).table)
        # Network input shape (first layer's input shape)
        print ("Input Shape: %s" % str(self.layers[0].input_shape))
        # Iterate through network and get each layer's configuration
        table_data = [["Layer Type", "Parameters", "Output Shape"]]
        tot_params = 0
        for layer in self.layers:
            layer_name = layer.layer_name()
            params = layer.parameters()
            out_shape = layer.output_shape()
            table_data.append([layer_name, str(params), str(out_shape)])
            tot_params += params
        # Print network configuration table
        print (AsciiTable(table_data).table)
        print ("Total Parameters: %d\n" % tot_params)

    def predict(self, X):
        """ Use the trained model to predict labels of X """
        return self._forward_pass(X, training=False)


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/120645441

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。