【第15篇】CBNetV2
CBNetV2: A Composite Backbone Network Architecture for Object Detection
代码:VDIGPKU/CBNetV2 (github.com)
论文地址:2107.00420.pdf (arxiv.org)
摘要
现代性能最好的物体检测器在很大程度上依赖于骨干网络,其进步通过探索更有效的网络结构带来了一致的性能提升。在本文中,我们提出了一种新颖且灵活的主干框架,即 CBNetV2,以在预训练微调范式下使用现有的开源预训练主干构建高性能检测器。特别是,CBNetV2 架构将多个相同的主干分组,这些主干通过复合连接连接。具体来说,它融合了多个骨干网络的高低层特征,并逐渐扩大感受野以更高效地进行目标检测。我们还为基于 CBNet 的检测器提出了一种具有辅助监督的更好的训练策略。 CBNetV2 对检测器架构的不同主干和头部设计具有很强的泛化能力。无需对复合主干进行额外的预训练,CBNetV2 可以适应各种主干(即,基于 CNN 与Transformer-based)和大多数主流检测器的头部设计(即,一级与两级,基于锚的与基于.基于anchorfree)。实验提供了强有力的证据,与简单地增加网络的深度和宽度相比,CBNetV2 引入了一种更高效、更有效和资源友好的方式来构建高性能骨干网络。特别是,我们的 DualSwin-L 在单模型和单尺度测试协议下在 COCO test-dev 上实现了 59.4% 的 box AP 和 51.6% 的 mask AP,这明显优于最先进的结果(即,
文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。
原文链接:wanghao.blog.csdn.net/article/details/120583025
- 点赞
- 收藏
- 关注作者
评论(0)