Numpy实现LogisticRegression
【摘要】
from __future__ import print_function, division
import numpy as np
import math
from mlfromscratch.util...
from __future__ import print_function, division
import numpy as np
import math
from mlfromscratch.utils import make_diagonal, Plot
from mlfromscratch.deep_learning.activation_functions import Sigmoid
class LogisticRegression():
""" Logistic Regression classifier.
Parameters:
-----------
learning_rate: float
The step length that will be taken when following the negative gradient during
training.
gradient_descent: boolean
True or false depending if gradient descent should be used when training. If
false then we use batch optimization by least squares.
"""
def __init__(self, learning_rate=.1, gradient_descent=True):
self.param = None
self.learning_rate = learning_rate
self.gradient_descent = gradient_descent
self.sigmoid = Sigmoid()
def _initialize_parameters(self, X):
n_features = np.shape(X)[1]
# Initialize parameters between [-1/sqrt(N), 1/sqrt(N)]
limit = 1 / math.sqrt(n_features)
self.param = np.random.uniform(-limit, limit, (n_features,))
def fit(self, X, y, n_iterations=4000):
self._initialize_parameters(X)
# Tune parameters for n iterations
for i in range(n_iterations):
# Make a new prediction
y_pred = self.sigmoid(X.dot(self.param))
if self.gradient_descent:
# Move against the gradient of the loss function with
# respect to the parameters to minimize the loss
self.param -= self.learning_rate * -(y - y_pred).dot(X)
else:
# Make a diagonal matrix of the sigmoid gradient column vector
diag_gradient = make_diagonal(self.sigmoid.gradient(X.dot(self.param)))
# Batch opt:
self.param = np.linalg.pinv(X.T.dot(diag_gradient).dot(X)).dot(X.T).dot(diag_gradient.dot(X).dot(self.param) + y - y_pred)
def predict(self, X):
y_pred = np.round(self.sigmoid(X.dot(self.param))).astype(int)
return y_pred
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。
原文链接:wanghao.blog.csdn.net/article/details/121558303
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)