Pytorch实现APNB
【摘要】
# !/usr/bin/env python
# -- coding: utf-8 --
import torch
import torch.nn as nn
import torchvision
im...
# !/usr/bin/env python
# -- coding: utf-8 --
import torch
import torch.nn as nn
import torchvision
import numpy as np
class SpatialPyramidPooling(nn.Module):
def __init__(self, output_sizes = [1, 3, 6, 8]):
super(SpatialPyramidPooling, self).__init__()
self.pool_layers = nn.ModuleList()
for output_size in output_sizes:
self.pool_layers.append(nn.AdaptiveMaxPool2d(output_size=output_size))
def forward(self, x):
outputs = []
for pool_layer in self.pool_layers:
outputs.append(pool_layer(x).flatten())
out = torch.cat(outputs, dim=0)
return out
class APNB(nn.Module):
def __init__(self, channel):
super(APNB, self).__init__()
self.inter_channel = channel // 2
self.conv_phi = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1,padding=0, bias=False)
self.conv_theta = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False)
self.conv_g = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False)
self.softmax = nn.Softmax(dim=1)
self.conv_mask = nn.Conv2d(in_channels=self.inter_channel, out_channels=channel, kernel_size=1, stride=1, padding=0, bias=False)
def forward(self, x):
# [N, C, H , W]
b, c, h, w = x.size()
# [N, C/2, H * W]
x_phi = self.conv_phi(x).view(b, c, -1)
# [N, H * W, C/2]
x_theta = self.conv_theta(x).view(b, c, -1).permute(0, 2, 1).contiguous()
x_g = self.conv_g(x).view(b, c, -1).permute(0, 2, 1).contiguous()
# [N, H * W, H * W]
mul_theta_phi = torch.matmul(x_theta, x_phi)
mul_theta_phi = self.softmax(mul_theta_phi)
# [N, H * W, C/2]
mul_theta_phi_g = torch.matmul(mul_theta_phi, x_g)
# [N, C/2, H, W]
mul_theta_phi_g = mul_theta_phi_g.permute(0,2,1).contiguous().view(b,self.inter_channel, h, w)
# [N, C, H , W]
mask = self.conv_mask(mul_theta_phi_g)
out = mask + x
return out
class AFNB(nn.Module):
def __init__(self, channel):
super(AFNB, self).__init__()
self.inter_channel = channel // 2
self.output_sizes = [1, 3, 6, 8]
self.sample_dim = np.sum([size*size for size in self.output_sizes])
self.conv_phi = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1,padding=0, bias=False)
self.conv_theta = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False)
self.conv_theta_spp = SpatialPyramidPooling(self.output_sizes)
self.conv_g = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False)
self.conv_g_spp = SpatialPyramidPooling(self.output_sizes)
self.softmax = nn.Softmax(dim=1)
self.conv_mask = nn.Conv2d(in_channels=self.inter_channel, out_channels=channel, kernel_size=1, stride=1, padding=0, bias=False)
def forward(self, x):
# [N, C, H , W]
b, c, h, w = x.size()
# [N, C/2, H * W]
x_phi = self.conv_phi(x).view(b, c, -1)
# [N, H * W, C/2]
xxx = self.conv_theta_spp(self.conv_theta(x))
print(xxx.shape)
x_theta = self.conv_theta_spp(self.conv_theta(x)).view(b, self.sample_dim, -1).permute(0, 2, 1).contiguous()
x_g = self.conv_g_spp(self.conv_g(x)).view(b, self.sample_dim, -1).permute(0, 2, 1).contiguous()
# [N, H * W, H * W]
mul_theta_phi = torch.matmul(x_theta, x_phi)
mul_theta_phi = self.softmax(mul_theta_phi)
# [N, H * W, C/2]
mul_theta_phi_g = torch.matmul(mul_theta_phi, x_g)
# [N, C/2, H, W]
mul_theta_phi_g = mul_theta_phi_g.permute(0,2,1).contiguous().view(b,self.inter_channel, h, w)
# [N, C, H , W]
mask = self.conv_mask(mul_theta_phi_g)
out = mask + x
return out
if __name__=='__main__':
model = AFNB(channel=16)
print(model)
input = torch.randn(1, 16, 64, 64)
out = model(input)
print(out.shape)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。
原文链接:wanghao.blog.csdn.net/article/details/121558745
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)