Pytorch实现APNB

举报
AI浩 发表于 2021/12/23 01:06:52 2021/12/23
【摘要】 # !/usr/bin/env python # -- coding: utf-8 -- import torch import torch.nn as nn import torchvision im...
# !/usr/bin/env python
# -- coding: utf-8 --

import torch
import torch.nn as nn
import torchvision
import numpy as np

class SpatialPyramidPooling(nn.Module):
    def __init__(self, output_sizes = [1, 3, 6, 8]):
        super(SpatialPyramidPooling, self).__init__()

        self.pool_layers = nn.ModuleList()
        for output_size in output_sizes:
            self.pool_layers.append(nn.AdaptiveMaxPool2d(output_size=output_size))

    def forward(self, x):
        outputs = []
        for pool_layer in self.pool_layers:
            outputs.append(pool_layer(x).flatten())
        out = torch.cat(outputs, dim=0)
        return out

class APNB(nn.Module):
    def __init__(self, channel):
        super(APNB, self).__init__()
        self.inter_channel = channel // 2
        self.conv_phi = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1,padding=0, bias=False)
        self.conv_theta = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False)
        self.conv_g = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False)
        self.softmax = nn.Softmax(dim=1)
        self.conv_mask = nn.Conv2d(in_channels=self.inter_channel, out_channels=channel, kernel_size=1, stride=1, padding=0, bias=False)

    def forward(self, x):
        # [N, C, H , W]
        b, c, h, w = x.size()
        # [N, C/2, H * W]
        x_phi = self.conv_phi(x).view(b, c, -1)
        # [N, H * W, C/2]
        x_theta = self.conv_theta(x).view(b, c, -1).permute(0, 2, 1).contiguous()
        x_g = self.conv_g(x).view(b, c, -1).permute(0, 2, 1).contiguous()
        # [N, H * W, H * W]
        mul_theta_phi = torch.matmul(x_theta, x_phi)
        mul_theta_phi = self.softmax(mul_theta_phi)
        # [N, H * W, C/2]
        mul_theta_phi_g = torch.matmul(mul_theta_phi, x_g)
        # [N, C/2, H, W]
        mul_theta_phi_g = mul_theta_phi_g.permute(0,2,1).contiguous().view(b,self.inter_channel, h, w)
        # [N, C, H , W]
        mask = self.conv_mask(mul_theta_phi_g)
        out = mask + x
        return out


class AFNB(nn.Module):
    def __init__(self, channel):
        super(AFNB, self).__init__()
        self.inter_channel = channel // 2
        self.output_sizes = [1, 3, 6, 8]
        self.sample_dim = np.sum([size*size for size in self.output_sizes])
        self.conv_phi = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1,padding=0, bias=False)
        self.conv_theta = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False)
        self.conv_theta_spp = SpatialPyramidPooling(self.output_sizes)
        self.conv_g = nn.Conv2d(in_channels=channel, out_channels=self.inter_channel, kernel_size=1, stride=1, padding=0, bias=False)
        self.conv_g_spp = SpatialPyramidPooling(self.output_sizes)
        self.softmax = nn.Softmax(dim=1)
        self.conv_mask = nn.Conv2d(in_channels=self.inter_channel, out_channels=channel, kernel_size=1, stride=1, padding=0, bias=False)

    def forward(self, x):
        # [N, C, H , W]
        b, c, h, w = x.size()
        # [N, C/2, H * W]
        x_phi = self.conv_phi(x).view(b, c, -1)
        # [N, H * W, C/2]
        xxx = self.conv_theta_spp(self.conv_theta(x))
        print(xxx.shape)
        x_theta = self.conv_theta_spp(self.conv_theta(x)).view(b, self.sample_dim, -1).permute(0, 2, 1).contiguous()
        x_g = self.conv_g_spp(self.conv_g(x)).view(b, self.sample_dim, -1).permute(0, 2, 1).contiguous()
        # [N, H * W, H * W]
        mul_theta_phi = torch.matmul(x_theta, x_phi)
        mul_theta_phi = self.softmax(mul_theta_phi)
        # [N, H * W, C/2]
        mul_theta_phi_g = torch.matmul(mul_theta_phi, x_g)
        # [N, C/2, H, W]
        mul_theta_phi_g = mul_theta_phi_g.permute(0,2,1).contiguous().view(b,self.inter_channel, h, w)
        # [N, C, H , W]
        mask = self.conv_mask(mul_theta_phi_g)
        out = mask + x
        return out

if __name__=='__main__':
    model = AFNB(channel=16)
    print(model)

    input = torch.randn(1, 16, 64, 64)
    out = model(input)
    print(out.shape)

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121558745

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。