Numpy实现XGBoost

举报
AI浩 发表于 2021/12/22 23:30:59 2021/12/22
【摘要】 from __future__ import division, print_function import numpy as np import progressbar from mlfromscra...
from __future__ import division, print_function
import numpy as np
import progressbar

from mlfromscratch.utils import train_test_split, standardize, to_categorical, normalize
from mlfromscratch.utils import mean_squared_error, accuracy_score
from mlfromscratch.supervised_learning import XGBoostRegressionTree
from mlfromscratch.deep_learning.activation_functions import Sigmoid
from mlfromscratch.utils.misc import bar_widgets
from mlfromscratch.utils import Plot


class LogisticLoss():
    def __init__(self):
        sigmoid = Sigmoid()
        self.log_func = sigmoid
        self.log_grad = sigmoid.gradient

    def loss(self, y, y_pred):
        y_pred = np.clip(y_pred, 1e-15, 1 - 1e-15)
        p = self.log_func(y_pred)
        return y * np.log(p) + (1 - y) * np.log(1 - p)

    # gradient w.r.t y_pred
    def gradient(self, y, y_pred):
        p = self.log_func(y_pred)
        return -(y - p)

    # w.r.t y_pred
    def hess(self, y, y_pred):
        p = self.log_func(y_pred)
        return p * (1 - p)


class XGBoost(object):
    """The XGBoost classifier.

    Reference: http://xgboost.readthedocs.io/en/latest/model.html

    Parameters:
    -----------
    n_estimators: int
        The number of classification trees that are used.
    learning_rate: float
        The step length that will be taken when following the negative gradient during
        training.
    min_samples_split: int
        The minimum number of samples needed to make a split when building a tree.
    min_impurity: float
        The minimum impurity required to split the tree further. 
    max_depth: int
        The maximum depth of a tree.
    """
    def __init__(self, n_estimators=200, learning_rate=0.001, min_samples_split=2,
                 min_impurity=1e-7, max_depth=2):
        self.n_estimators = n_estimators            # Number of trees
        self.learning_rate = learning_rate          # Step size for weight update
        self.min_samples_split = min_samples_split  # The minimum n of sampels to justify split
        self.min_impurity = min_impurity              # Minimum variance reduction to continue
        self.max_depth = max_depth                  # Maximum depth for tree

        self.bar = progressbar.ProgressBar(widgets=bar_widgets)
        
        # Log loss for classification
        self.loss = LogisticLoss()

        # Initialize regression trees
        self.trees = []
        for _ in range(n_estimators):
            tree = XGBoostRegressionTree(
                    min_samples_split=self.min_samples_split,
                    min_impurity=min_impurity,
                    max_depth=self.max_depth,
                    loss=self.loss)

            self.trees.append(tree)

    def fit(self, X, y):
        y = to_categorical(y)

        y_pred = np.zeros(np.shape(y))
        for i in self.bar(range(self.n_estimators)):
            tree = self.trees[i]
            y_and_pred = np.concatenate((y, y_pred), axis=1)
            tree.fit(X, y_and_pred)
            update_pred = tree.predict(X)

            y_pred -= np.multiply(self.learning_rate, update_pred)

    def predict(self, X):
        y_pred = None
        # Make predictions
        for tree in self.trees:
            # Estimate gradient and update prediction
            update_pred = tree.predict(X)
            if y_pred is None:
                y_pred = np.zeros_like(update_pred)
            y_pred -= np.multiply(self.learning_rate, update_pred)

        # Turn into probability distribution (Softmax)
        y_pred = np.exp(y_pred) / np.sum(np.exp(y_pred), axis=1, keepdims=True)
        # Set label to the value that maximizes probability
        y_pred = np.argmax(y_pred, axis=1)
        return y_pred


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121558375

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。