Numpy实现SVM

举报
AI浩 发表于 2021/12/23 00:43:30 2021/12/23
【摘要】 from __future__ import division, print_function import numpy as np import cvxopt from mlfromscratch.u...

from __future__ import division, print_function
import numpy as np
import cvxopt
from mlfromscratch.utils import train_test_split, normalize, accuracy_score
from mlfromscratch.utils.kernels import *
from mlfromscratch.utils import Plot

# Hide cvxopt output
cvxopt.solvers.options['show_progress'] = False

class SupportVectorMachine(object):
    """The Support Vector Machine classifier.
    Uses cvxopt to solve the quadratic optimization problem.

    Parameters:
    -----------
    C: float
        Penalty term.
    kernel: function
        Kernel function. Can be either polynomial, rbf or linear.
    power: int
        The degree of the polynomial kernel. Will be ignored by the other
        kernel functions.
    gamma: float
        Used in the rbf kernel function.
    coef: float
        Bias term used in the polynomial kernel function.
    """
    def __init__(self, C=1, kernel=rbf_kernel, power=4, gamma=None, coef=4):
        self.C = C
        self.kernel = kernel
        self.power = power
        self.gamma = gamma
        self.coef = coef
        self.lagr_multipliers = None
        self.support_vectors = None
        self.support_vector_labels = None
        self.intercept = None

    def fit(self, X, y):

        n_samples, n_features = np.shape(X)

        # Set gamma to 1/n_features by default
        if not self.gamma:
            self.gamma = 1 / n_features

        # Initialize kernel method with parameters
        self.kernel = self.kernel(
            power=self.power,
            gamma=self.gamma,
            coef=self.coef)

        # Calculate kernel matrix
        kernel_matrix = np.zeros((n_samples, n_samples))
        for i in range(n_samples):
            for j in range(n_samples):
                kernel_matrix[i, j] = self.kernel(X[i], X[j])

        # Define the quadratic optimization problem
        P = cvxopt.matrix(np.outer(y, y) * kernel_matrix, tc='d')
        q = cvxopt.matrix(np.ones(n_samples) * -1)
        A = cvxopt.matrix(y, (1, n_samples), tc='d')
        b = cvxopt.matrix(0, tc='d')

        if not self.C:
            G = cvxopt.matrix(np.identity(n_samples) * -1)
            h = cvxopt.matrix(np.zeros(n_samples))
        else:
            G_max = np.identity(n_samples) * -1
            G_min = np.identity(n_samples)
            G = cvxopt.matrix(np.vstack((G_max, G_min)))
            h_max = cvxopt.matrix(np.zeros(n_samples))
            h_min = cvxopt.matrix(np.ones(n_samples) * self.C)
            h = cvxopt.matrix(np.vstack((h_max, h_min)))

        # Solve the quadratic optimization problem using cvxopt
        minimization = cvxopt.solvers.qp(P, q, G, h, A, b)

        # Lagrange multipliers
        lagr_mult = np.ravel(minimization['x'])

        # Extract support vectors
        # Get indexes of non-zero lagr. multipiers
        idx = lagr_mult > 1e-7
        # Get the corresponding lagr. multipliers
        self.lagr_multipliers = lagr_mult[idx]
        # Get the samples that will act as support vectors
        self.support_vectors = X[idx]
        # Get the corresponding labels
        self.support_vector_labels = y[idx]

        # Calculate intercept with first support vector
        self.intercept = self.support_vector_labels[0]
        for i in range(len(self.lagr_multipliers)):
            self.intercept -= self.lagr_multipliers[i] * self.support_vector_labels[
                i] * self.kernel(self.support_vectors[i], self.support_vectors[0])

    def predict(self, X):
        y_pred = []
        # Iterate through list of samples and make predictions
        for sample in X:
            prediction = 0
            # Determine the label of the sample by the support vectors
            for i in range(len(self.lagr_multipliers)):
                prediction += self.lagr_multipliers[i] * self.support_vector_labels[
                    i] * self.kernel(self.support_vectors[i], sample)
            prediction += self.intercept
            y_pred.append(np.sign(prediction))
        return np.array(y_pred)


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121558393

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。