MobileNetXt

举报
AI浩 发表于 2021/12/22 23:57:14 2021/12/22
【摘要】 import torch import torch.nn as nn import torchvision from functools import reduce def Conv3x3BN(in_...
import torch
import torch.nn as nn
import torchvision
from functools import reduce


def Conv3x3BN(in_channels,out_channels,stride=1,groups=1):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=1, groups=groups),
            nn.BatchNorm2d(out_channels)
        )

def Conv3x3BNReLU(in_channels,out_channels,stride=1,groups=1):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=1, groups=groups),
            nn.BatchNorm2d(out_channels),
            nn.ReLU6(inplace=True)
        )

def Conv1x1BN(in_channels,out_channels):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
            nn.BatchNorm2d(out_channels)
        )

def Conv1x1BNReLU(in_channels,out_channels):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
            nn.BatchNorm2d(out_channels),
            nn.ReLU6(inplace=True)
        )

class SandglassBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride, expansion_factor=6):
        super(SandglassBlock, self).__init__()
        self.stride = stride
        mid_channels = in_channels // expansion_factor
        self.identity = stride == 1 and in_channels == out_channels

        self.bottleneck = nn.Sequential(
            Conv3x3BNReLU(in_channels, in_channels, 1, groups=in_channels),
            Conv1x1BN(in_channels, mid_channels),
            Conv1x1BNReLU(mid_channels, out_channels),
            Conv3x3BN(out_channels, out_channels, stride, groups=out_channels),
        )

    def forward(self, x):
        out = self.bottleneck(x)
        if self.identity:
            return out + x
        else:
            return out


class MobileNetXt(nn.Module):
    def __init__(self, num_classes=1000):
        super(MobileNetXt,self).__init__()

        self.first_conv = Conv3x3BNReLU(3,32,2,groups=1)

        self.layer1 = self.make_layer(in_channels=32, out_channels=96, stride=2, expansion_factor=2, block_num=1)
        self.layer2 = self.make_layer(in_channels=96, out_channels=144, stride=1, expansion_factor=6, block_num=1)
        self.layer3 = self.make_layer(in_channels=144, out_channels=192, stride=2, expansion_factor=6, block_num=3)
        self.layer4 = self.make_layer(in_channels=192, out_channels=288, stride=2, expansion_factor=6, block_num=3)
        self.layer5 = self.make_layer(in_channels=288, out_channels=384, stride=1, expansion_factor=6, block_num=4)
        self.layer6 = self.make_layer(in_channels=384, out_channels=576, stride=2, expansion_factor=6, block_num=4)
        self.layer7 = self.make_layer(in_channels=576, out_channels=960, stride=1, expansion_factor=6, block_num=2)
        self.layer8 = self.make_layer(in_channels=960, out_channels=1280, stride=1, expansion_factor=6, block_num=1)

        self.avgpool = nn.AvgPool2d(kernel_size=7,stride=1)
        self.dropout = nn.Dropout(p=0.2)
        self.linear = nn.Linear(in_features=1280,out_features=num_classes)

    def make_layer(self, in_channels, out_channels, stride, expansion_factor, block_num):
        layers = []
        layers.append(SandglassBlock(in_channels, out_channels, stride,expansion_factor))
        for i in range(1, block_num):
            layers.append(SandglassBlock(out_channels,out_channels,1,expansion_factor))
        return nn.Sequential(*layers)

    def init_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear) or isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.first_conv(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.layer5(x)
        x = self.layer6(x)
        x = self.layer7(x)
        x = self.layer8(x)
        x = self.avgpool(x)
        x = x.view(x.size(0),-1)
        x = self.dropout(x)
        out = self.linear(x)
        return out


if __name__=='__main__':
    model = MobileNetXt()
    print(model)

    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121607301

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。