Numpy实现Neuroevolution(神经网络进化)

举报
AI浩 发表于 2021/12/22 22:50:50 2021/12/22
【摘要】 from __future__ import print_function, division import numpy as np import copy class Neuroevolution()...
from __future__ import print_function, division
import numpy as np
import copy

class Neuroevolution():
    """ Evolutionary optimization of Neural Networks.

    Parameters:
    -----------
    n_individuals: int
        The number of neural networks that are allowed in the population at a time.
    mutation_rate: float
        The probability that a weight will be mutated.
    model_builder: method
        A method which returns a user specified NeuralNetwork instance. 
    """
    def __init__(self, population_size, mutation_rate, model_builder):
        self.population_size = population_size
        self.mutation_rate = mutation_rate
        self.model_builder = model_builder

    def _build_model(self, id):
        """ Returns a new individual """
        model = self.model_builder(n_inputs=self.X.shape[1], n_outputs=self.y.shape[1])
        model.id = id
        model.fitness = 0
        model.accuracy = 0
        
        return model

    def _initialize_population(self):
        """ Initialization of the neural networks forming the population"""
        self.population = []
        for _ in range(self.population_size):
            model = self._build_model(id=np.random.randint(1000))
            self.population.append(model)

    def _mutate(self, individual, var=1):
        """ Add zero mean gaussian noise to the layer weights with probability mutation_rate """
        for layer in individual.layers:
            if hasattr(layer, 'W'):
                # Mutation of weight with probability self.mutation_rate
                mutation_mask = np.random.binomial(1, p=self.mutation_rate, size=layer.W.shape)
                layer.W += np.random.normal(loc=0, scale=var, size=layer.W.shape) * mutation_mask
                mutation_mask = np.random.binomial(1, p=self.mutation_rate, size=layer.w0.shape)
                layer.w0 += np.random.normal(loc=0, scale=var, size=layer.w0.shape) * mutation_mask
        
        return individual

    def _inherit_weights(self, child, parent):
        """ Copies the weights from parent to child """
        for i in range(len(child.layers)):
            if hasattr(child.layers[i], 'W'):
                # The child inherits both weights W and bias weights w0
                child.layers[i].W = parent.layers[i].W.copy()
                child.layers[i].w0 = parent.layers[i].w0.copy()

    def _crossover(self, parent1, parent2):
        """ Performs crossover between the neurons in parent1 and parent2 to form offspring """
        child1 = self._build_model(id=parent1.id+1)
        self._inherit_weights(child1, parent1)
        child2 = self._build_model(id=parent2.id+1)
        self._inherit_weights(child2, parent2)

        # Perform crossover
        for i in range(len(child1.layers)):
            if hasattr(child1.layers[i], 'W'):
                n_neurons = child1.layers[i].W.shape[1]
                # Perform crossover between the individuals' neuron weights
                cutoff = np.random.randint(0, n_neurons)
                child1.layers[i].W[:, cutoff:] = parent2.layers[i].W[:, cutoff:].copy()
                child1.layers[i].w0[:, cutoff:] = parent2.layers[i].w0[:, cutoff:].copy()
                child2.layers[i].W[:, cutoff:] = parent1.layers[i].W[:, cutoff:].copy()
                child2.layers[i].w0[:, cutoff:] = parent1.layers[i].w0[:, cutoff:].copy()
        
        return child1, child2

    def _calculate_fitness(self):
        """ Evaluate the NNs on the test set to get fitness scores """
        for individual in self.population:
            loss, acc = individual.test_on_batch(self.X, self.y)
            individual.fitness = 1 / (loss + 1e-8)
            individual.accuracy = acc

    def evolve(self, X, y, n_generations):
        """ Will evolve the population for n_generations based on dataset X and labels y"""
        self.X, self.y = X, y

        self._initialize_population()

        # The 40% highest fittest individuals will be selected for the next generation
        n_winners = int(self.population_size * 0.4)
        # The fittest 60% of the population will be selected as parents to form offspring
        n_parents = self.population_size - n_winners

        for epoch in range(n_generations):
            # Determine the fitness of the individuals in the population
            self._calculate_fitness()

            # Sort population by fitness
            sorted_i = np.argsort([model.fitness for model in self.population])[::-1]
            self.population = [self.population[i] for i in sorted_i]

            # Get the individual with the highest fitness
            fittest_individual = self.population[0]
            print ("[%d Best Individual - Fitness: %.5f, Accuracy: %.1f%%]" % (epoch, 
                                                                        fittest_individual.fitness, 
                                                                        float(100*fittest_individual.accuracy)))
            # The 'winners' are selected for the next generation
            next_population = [self.population[i] for i in range(n_winners)]

            total_fitness = np.sum([model.fitness for model in self.population])
            # The probability that a individual will be selected as a parent is proportionate to its fitness
            parent_probabilities = [model.fitness / total_fitness for model in self.population]
            # Select parents according to probabilities (without replacement to preserve diversity)
            parents = np.random.choice(self.population, size=n_parents, p=parent_probabilities, replace=False)
            for i in np.arange(0, len(parents), 2):
                # Perform crossover to produce offspring
                child1, child2 = self._crossover(parents[i], parents[i+1])
                # Save mutated offspring for next population
                next_population += [self._mutate(child1), self._mutate(child2)]

            self.population = next_population

        return fittest_individual



  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121558523

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。