Numpy实现ParticleSwarmOptimizedNN(粒子群优化算法)

举报
AI浩 发表于 2021/12/22 23:35:44 2021/12/22
【摘要】 from __future__ import print_function, division import numpy as np import copy class ParticleSwarmOpt...
from __future__ import print_function, division
import numpy as np
import copy

class ParticleSwarmOptimizedNN():
    """ Particle Swarm Optimization of Neural Network.

    Parameters:
    -----------
    n_individuals: int
        The number of neural networks that are allowed in the population at a time.
    model_builder: method
        A method which returns a user specified NeuralNetwork instance.
    inertia_weight:     float [0,1)
    cognitive_weight:   float [0,1)
    social_weight:      float [0,1)
    max_velocity: float
        The maximum allowed value for the velocity.

    Reference:
        Neural Network Training Using Particle Swarm Optimization
        https://visualstudiomagazine.com/articles/2013/12/01/neural-network-training-using-particle-swarm-optimization.aspx 
    """
    def __init__(self, population_size, 
                        model_builder, 
                        inertia_weight=0.8, 
                        cognitive_weight=2, 
                        social_weight=2, 
                        max_velocity=20):
        self.population_size = population_size
        self.model_builder = model_builder
        self.best_individual = None
        # Parameters used to update velocity
        self.cognitive_w = cognitive_weight
        self.inertia_w = inertia_weight
        self.social_w = social_weight
        self.min_v = -max_velocity
        self.max_v = max_velocity

    def _build_model(self, id):
        """ Returns a new individual """
        model = self.model_builder(n_inputs=self.X.shape[1], n_outputs=self.y.shape[1])
        model.id = id
        model.fitness = 0
        model.highest_fitness = 0
        model.accuracy = 0
        # Set intial best as the current initialization
        model.best_layers = copy.copy(model.layers)

        # Set initial velocity to zero
        model.velocity = []
        for layer in model.layers:
            velocity = {"W": 0, "w0": 0}
            if hasattr(layer, 'W'):
                velocity = {"W": np.zeros_like(layer.W), "w0": np.zeros_like(layer.w0)}
            model.velocity.append(velocity)

        return model

    def _initialize_population(self):
        """ Initialization of the neural networks forming the population"""
        self.population = []
        for i in range(self.population_size):
            model = self._build_model(id=i)
            self.population.append(model)

    def _update_weights(self, individual):
        """ Calculate the new velocity and update weights for each layer """
        # Two random parameters used to update the velocity
        r1 = np.random.uniform()
        r2 = np.random.uniform()
        for i, layer in enumerate(individual.layers):
            if hasattr(layer, 'W'):
                # Layer weights velocity
                first_term_W = self.inertia_w * individual.velocity[i]["W"]
                second_term_W = self.cognitive_w * r1 * (individual.best_layers[i].W - layer.W)
                third_term_W = self.social_w * r2 * (self.best_individual.layers[i].W - layer.W)
                new_velocity = first_term_W + second_term_W + third_term_W
                individual.velocity[i]["W"] = np.clip(new_velocity, self.min_v, self.max_v)

                # Bias weight velocity
                first_term_w0 = self.inertia_w * individual.velocity[i]["w0"]
                second_term_w0 = self.cognitive_w * r1 * (individual.best_layers[i].w0 - layer.w0)
                third_term_w0 = self.social_w * r2 * (self.best_individual.layers[i].w0 - layer.w0)
                new_velocity = first_term_w0 + second_term_w0 + third_term_w0
                individual.velocity[i]["w0"] = np.clip(new_velocity, self.min_v, self.max_v)

                # Update layer weights with velocity
                individual.layers[i].W += individual.velocity[i]["W"]
                individual.layers[i].w0 += individual.velocity[i]["w0"]
        
    def _calculate_fitness(self, individual):
        """ Evaluate the individual on the test set to get fitness scores """
        loss, acc = individual.test_on_batch(self.X, self.y)
        individual.fitness = 1 / (loss + 1e-8)
        individual.accuracy = acc

    def evolve(self, X, y, n_generations):
        """ Will evolve the population for n_generations based on dataset X and labels y"""
        self.X, self.y = X, y

        self._initialize_population()

        # The best individual of the population is initialized as population's first ind.
        self.best_individual = copy.copy(self.population[0])

        for epoch in range(n_generations):
            for individual in self.population:
                # Calculate new velocity and update the NN weights
                self._update_weights(individual)
                # Calculate the fitness of the updated individual
                self._calculate_fitness(individual)

                # If the current fitness is higher than the individual's previous highest
                # => update the individual's best layer setup
                if individual.fitness > individual.highest_fitness:
                    individual.best_layers = copy.copy(individual.layers)
                    individual.highest_fitness = individual.fitness
                # If the individual's fitness is higher than the highest recorded fitness for the
                # whole population => update the best individual
                if individual.fitness > self.best_individual.fitness:
                    self.best_individual = copy.copy(individual)

            print ("[%d Best Individual - ID: %d Fitness: %.5f, Accuracy: %.1f%%]" % (epoch,
                                                                            self.best_individual.id,
                                                                            self.best_individual.fitness,
                                                                            100*float(self.best_individual.accuracy)))
        return self.best_individual



  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121558493

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。