Pytorch实现EfficientNet
【摘要】
# !/usr/bin/env python
# -- coding: utf-8 --
import math
import torch
import torch.nn as nn
class S...
# !/usr/bin/env python
# -- coding: utf-8 --
import math
import torch
import torch.nn as nn
class Swish(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
def ConvBNAct(in_channels,out_channels,kernel_size=3, stride=1,groups=1):
return nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=groups),
nn.BatchNorm2d(out_channels),
Swish()
)
def Conv1x1BNAct(in_channels,out_channels):
return nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
nn.BatchNorm2d(out_channels),
Swish()
)
def Conv1x1BN(in_channels,out_channels):
return nn.Sequential(
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
nn.BatchNorm2d(out_channels)
)
def Conv1(in_planes, places, stride=2):
return nn.Sequential(
nn.Conv2d(in_channels=in_planes,out_channels=places,kernel_size=7,stride=stride,padding=3, bias=False),
nn.BatchNorm2d(places),
Swish(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.shape[0], -1)
class SEBlock(nn.Module):
def __init__(self, channels, ratio=16):
super().__init__()
mid_channels = channels // ratio
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channels, mid_channels, kernel_size=1, stride=1, padding=0, bias=True),
Swish(),
nn.Conv2d(mid_channels, channels, kernel_size=1, stride=1, padding=0, bias=True),
)
def forward(self, x):
return x * torch.sigmoid(self.se(x))
class MBConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, expansion_factor=6):
super(MBConvBlock, self).__init__()
self.stride = stride
self.expansion_factor = expansion_factor
mid_channels = (in_channels * expansion_factor)
self.bottleneck = nn.Sequential(
Conv1x1BNAct(in_channels, mid_channels),
ConvBNAct(mid_channels, mid_channels, kernel_size, stride, groups=mid_channels),
SEBlock(mid_channels),
Conv1x1BN(mid_channels, out_channels)
)
if self.stride == 1:
self.shortcut = Conv1x1BN(in_channels, out_channels)
def forward(self, x):
out = self.bottleneck(x)
out = (out + self.shortcut(x)) if self.stride==1 else out
return out
class EfficientNet(nn.Module):
params = {
'efficientnet_b0': (1.0, 1.0, 224, 0.2),
'efficientnet_b1': (1.0, 1.1, 240, 0.2),
'efficientnet_b2': (1.1, 1.2, 260, 0.3),
'efficientnet_b3': (1.2, 1.4, 300, 0.3),
'efficientnet_b4': (1.4, 1.8, 380, 0.4),
'efficientnet_b5': (1.6, 2.2, 456, 0.4),
'efficientnet_b6': (1.8, 2.6, 528, 0.5),
'efficientnet_b7': (2.0, 3.1, 600, 0.5),
}
def __init__(self, subtype='efficientnet_b0', num_classes=1000):
super(EfficientNet, self).__init__()
self.width_coeff = self.params[subtype][0]
self.depth_coeff = self.params[subtype][1]
self.dropout_rate = self.params[subtype][3]
self.depth_div = 8
self.stage1 = ConvBNAct(3, self._calculate_width(32), kernel_size=3, stride=2)
self.stage2 = self.make_layer(self._calculate_width(32), self._calculate_width(16), kernel_size=3, stride=1, block=self._calculate_depth(1))
self.stage3 = self.make_layer(self._calculate_width(16), self._calculate_width(24), kernel_size=3, stride=2, block=self._calculate_depth(2))
self.stage4 = self.make_layer(self._calculate_width(24), self._calculate_width(40), kernel_size=5, stride=2, block=self._calculate_depth(2))
self.stage5 = self.make_layer(self._calculate_width(40), self._calculate_width(80), kernel_size=3, stride=2, block=self._calculate_depth(3))
self.stage6 = self.make_layer(self._calculate_width(80), self._calculate_width(112), kernel_size=5, stride=1, block=self._calculate_depth(3))
self.stage7 = self.make_layer(self._calculate_width(112), self._calculate_width(192), kernel_size=5, stride=2, block=self._calculate_depth(4))
self.stage8 = self.make_layer(self._calculate_width(192), self._calculate_width(320), kernel_size=3, stride=1, block=self._calculate_depth(1))
self.classifier = nn.Sequential(
Conv1x1BNAct(320, 1280),
nn.AdaptiveAvgPool2d(1),
nn.Dropout2d(0.2),
Flatten(),
nn.Linear(1280, num_classes)
)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
elif isinstance(m, nn.Linear):
init_range = 1.0 / math.sqrt(m.weight.shape[1])
nn.init.uniform_(m.weight, -init_range, init_range)
def _calculate_width(self, x):
x *= self.width_coeff
new_x = max(self.depth_div, int(x + self.depth_div / 2) // self.depth_div * self.depth_div)
if new_x < 0.9 * x:
new_x += self.depth_div
return int(new_x)
def _calculate_depth(self, x):
return int(math.ceil(x * self.depth_coeff))
def make_layer(self, in_places, places, kernel_size, stride, block):
layers = []
layers.append(MBConvBlock(in_places, places, kernel_size, stride))
for i in range(1, block):
layers.append(MBConvBlock(places, places, kernel_size))
return nn.Sequential(*layers)
def forward(self, x):
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.stage5(x)
x = self.stage6(x)
x = self.stage7(x)
x = self.stage8(x)
out = self.classifier(x)
return out
if __name__=='__main__':
model = EfficientNet('efficientnet_b0')
print(model)
input = torch.randn(1, 3, 224, 224)
out = model(input)
print(out.shape)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。
原文链接:wanghao.blog.csdn.net/article/details/121573903
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)