Pytorch实现InceptionV1

举报
AI浩 发表于 2021/12/22 22:29:24 2021/12/22
【摘要】 import torch import torch.nn as nn import torchvision def ConvBNReLU(in_channels,out_channels,kernel_...
import torch
import torch.nn as nn
import torchvision

def ConvBNReLU(in_channels,out_channels,kernel_size):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=1,padding=kernel_size//2),
        nn.BatchNorm2d(out_channels),
        nn.ReLU6(inplace=True)
    )

class InceptionV1Module(nn.Module):
    def __init__(self, in_channels,out_channels1, out_channels2reduce,out_channels2, out_channels3reduce, out_channels3, out_channels4):
        super(InceptionV1Module, self).__init__()

        self.branch1_conv = ConvBNReLU(in_channels=in_channels,out_channels=out_channels1,kernel_size=1)

        self.branch2_conv1 = ConvBNReLU(in_channels=in_channels,out_channels=out_channels2reduce,kernel_size=1)
        self.branch2_conv2 = ConvBNReLU(in_channels=out_channels2reduce,out_channels=out_channels2,kernel_size=3)

        self.branch3_conv1 = ConvBNReLU(in_channels=in_channels, out_channels=out_channels3reduce, kernel_size=1)
        self.branch3_conv2 = ConvBNReLU(in_channels=out_channels3reduce, out_channels=out_channels3, kernel_size=5)

        self.branch4_pool = nn.MaxPool2d(kernel_size=3,stride=1,padding=1)
        self.branch4_conv1 = ConvBNReLU(in_channels=in_channels, out_channels=out_channels4, kernel_size=1)

    def forward(self,x):
        out1 = self.branch1_conv(x)
        out2 = self.branch2_conv2(self.branch2_conv1(x))
        out3 = self.branch3_conv2(self.branch3_conv1(x))
        out4 = self.branch4_conv1(self.branch4_pool(x))
        out = torch.cat([out1, out2, out3, out4], dim=1)
        return out

class InceptionAux(nn.Module):
    def __init__(self, in_channels,out_channels):
        super(InceptionAux, self).__init__()

        self.auxiliary_avgpool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.auxiliary_conv1 = ConvBNReLU(in_channels=in_channels, out_channels=128, kernel_size=1)
        self.auxiliary_linear1 = nn.Linear(in_features=128 * 4 * 4, out_features=1024)
        self.auxiliary_relu = nn.ReLU6(inplace=True)
        self.auxiliary_dropout = nn.Dropout(p=0.7)
        self.auxiliary_linear2 = nn.Linear(in_features=1024, out_features=out_channels)

    def forward(self, x):
        x = self.auxiliary_conv1(self.auxiliary_avgpool(x))
        x = x.view(x.size(0), -1)
        x= self.auxiliary_relu(self.auxiliary_linear1(x))
        out = self.auxiliary_linear2(self.auxiliary_dropout(x))
        return out

class InceptionV1(nn.Module):
    def __init__(self, num_classes=1000, stage='train'):
        super(InceptionV1, self).__init__()
        self.stage = stage

        self.block1 = nn.Sequential(
            nn.Conv2d(in_channels=3,out_channels=64,kernel_size=7,stride=2,padding=3),
            nn.BatchNorm2d(64),
            nn.MaxPool2d(kernel_size=3,stride=2, padding=1),
            nn.Conv2d(in_channels=64, out_channels=64, kernel_size=1, stride=1),
            nn.BatchNorm2d(64),
        )
        self.block2 = nn.Sequential(
            nn.Conv2d(in_channels=64, out_channels=192, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(192),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
        )

        self.block3 = nn.Sequential(
            InceptionV1Module(in_channels=192,out_channels1=64, out_channels2reduce=96, out_channels2=128, out_channels3reduce = 16, out_channels3=32, out_channels4=32),
            InceptionV1Module(in_channels=256, out_channels1=128, out_channels2reduce=128, out_channels2=192,out_channels3reduce=32, out_channels3=96, out_channels4=64),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
        )

        self.block4_1 = InceptionV1Module(in_channels=480, out_channels1=192, out_channels2reduce=96, out_channels2=208,out_channels3reduce=16, out_channels3=48, out_channels4=64)

        if self.stage == 'train':
            self.aux_logits1 = InceptionAux(in_channels=512,out_channels=num_classes)

        self.block4_2 = nn.Sequential(
            InceptionV1Module(in_channels=512, out_channels1=160, out_channels2reduce=112, out_channels2=224,
                              out_channels3reduce=24, out_channels3=64, out_channels4=64),
            InceptionV1Module(in_channels=512, out_channels1=128, out_channels2reduce=128, out_channels2=256,
                              out_channels3reduce=24, out_channels3=64, out_channels4=64),
            InceptionV1Module(in_channels=512, out_channels1=112, out_channels2reduce=144, out_channels2=288,
                              out_channels3reduce=32, out_channels3=64, out_channels4=64),
        )

        if self.stage == 'train':
            self.aux_logits2 = InceptionAux(in_channels=528,out_channels=num_classes)

        self.block4_3 = nn.Sequential(
            InceptionV1Module(in_channels=528, out_channels1=256, out_channels2reduce=160, out_channels2=320,
                              out_channels3reduce=32, out_channels3=128, out_channels4=128),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
        )

        self.block5 = nn.Sequential(
            InceptionV1Module(in_channels=832, out_channels1=256, out_channels2reduce=160, out_channels2=320,out_channels3reduce=32, out_channels3=128, out_channels4=128),
            InceptionV1Module(in_channels=832, out_channels1=384, out_channels2reduce=192, out_channels2=384,out_channels3reduce=48, out_channels3=128, out_channels4=128),
        )

        self.avgpool = nn.AvgPool2d(kernel_size=7,stride=1)
        self.dropout = nn.Dropout(p=0.4)
        self.linear = nn.Linear(in_features=1024,out_features=num_classes)

    def forward(self, x):
        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)
        aux1 = x = self.block4_1(x)
        aux2 = x = self.block4_2(x)
        x = self.block4_3(x)
        out = self.block5(x)
        out = self.avgpool(out)
        out = self.dropout(out)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        if self.stage == 'train':
            aux1 = self.aux_logits1(aux1)
            aux2 = self.aux_logits2(aux2)
            return aux1, aux2, out
        else:
            return out

if __name__=='__main__':
    model = InceptionV1()
    print(model)

    input = torch.randn(1, 3, 224, 224)
    aux1, aux2, out = model(input)
    print(aux1.shape)
    print(aux2.shape)
    print(out.shape)


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121573916

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。