Pytorch实现InceptionV2

举报
AI浩 发表于 2021/12/22 22:50:12 2021/12/22
【摘要】 import torch import torch.nn as nn import torchvision def ConvBNReLU(in_channels,out_channels,kernel_...
import torch
import torch.nn as nn
import torchvision

def ConvBNReLU(in_channels,out_channels,kernel_size,stride=1,padding=0):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,padding=padding),
        nn.BatchNorm2d(out_channels),
        nn.ReLU6(inplace=True),
    )

def ConvBNReLUFactorization(in_channels,out_channels,kernel_sizes,paddings):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_sizes, stride=1,padding=paddings),
        nn.BatchNorm2d(out_channels),
        nn.ReLU6(inplace=True)
    )

class InceptionV2ModuleA(nn.Module):
    def __init__(self, in_channels,out_channels1,out_channels2reduce, out_channels2, out_channels3reduce, out_channels3, out_channels4):
        super(InceptionV2ModuleA, self).__init__()

        self.branch1 = ConvBNReLU(in_channels=in_channels,out_channels=out_channels1,kernel_size=1)

        self.branch2 = nn.Sequential(
            ConvBNReLU(in_channels=in_channels, out_channels=out_channels2reduce, kernel_size=1),
            ConvBNReLU(in_channels=out_channels2reduce, out_channels=out_channels2, kernel_size=3, padding=1),
        )

        self.branch3 = nn.Sequential(
            ConvBNReLU(in_channels=in_channels,out_channels=out_channels3reduce,kernel_size=1),
            ConvBNReLU(in_channels=out_channels3reduce, out_channels=out_channels3, kernel_size=3, padding=1),
            ConvBNReLU(in_channels=out_channels3, out_channels=out_channels3, kernel_size=3, padding=1),
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            ConvBNReLU(in_channels=in_channels, out_channels=out_channels4, kernel_size=1),
        )

    def forward(self, x):
        out1 = self.branch1(x)
        out2 = self.branch2(x)
        out3 = self.branch3(x)
        out4 = self.branch4(x)
        out = torch.cat([out1, out2, out3, out4], dim=1)
        return out

class InceptionV2ModuleB(nn.Module):
    def __init__(self, in_channels,out_channels1,out_channels2reduce, out_channels2, out_channels3reduce, out_channels3, out_channels4):
        super(InceptionV2ModuleB, self).__init__()

        self.branch1 = ConvBNReLU(in_channels=in_channels,out_channels=out_channels1,kernel_size=1)

        self.branch2 = nn.Sequential(
            ConvBNReLU(in_channels=in_channels, out_channels=out_channels2reduce, kernel_size=1),
            ConvBNReLUFactorization(in_channels=out_channels2reduce, out_channels=out_channels2reduce, kernel_sizes=[1,3],paddings=[0,1]),
            ConvBNReLUFactorization(in_channels=out_channels2reduce, out_channels=out_channels2, kernel_sizes=[3,1],paddings=[1, 0]),
        )

        self.branch3 = nn.Sequential(
            ConvBNReLU(in_channels=in_channels,out_channels=out_channels3reduce,kernel_size=1),
            ConvBNReLUFactorization(in_channels=out_channels3reduce, out_channels=out_channels3reduce,kernel_sizes=[1, 3], paddings=[0, 1]),
            ConvBNReLUFactorization(in_channels=out_channels3reduce, out_channels=out_channels3reduce,kernel_sizes=[3, 1], paddings=[1, 0]),
            ConvBNReLUFactorization(in_channels=out_channels3reduce, out_channels=out_channels3reduce, kernel_sizes=[1, 3], paddings=[0, 1]),
            ConvBNReLUFactorization(in_channels=out_channels3reduce, out_channels=out_channels3,kernel_sizes=[3, 1], paddings=[1, 0]),
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            ConvBNReLU(in_channels=in_channels, out_channels=out_channels4, kernel_size=1),
        )

    def forward(self, x):
        out1 = self.branch1(x)
        out2 = self.branch2(x)
        out3 = self.branch3(x)
        out4 = self.branch4(x)
        out = torch.cat([out1, out2, out3, out4], dim=1)
        return out

class InceptionV2ModuleC(nn.Module):
    def __init__(self, in_channels,out_channels1,out_channels2reduce, out_channels2, out_channels3reduce, out_channels3, out_channels4):
        super(InceptionV2ModuleC, self).__init__()

        self.branch1 = ConvBNReLU(in_channels=in_channels,out_channels=out_channels1,kernel_size=1)

        self.branch2_conv1 = ConvBNReLU(in_channels=in_channels, out_channels=out_channels2reduce, kernel_size=1)
        self.branch2_conv2a = ConvBNReLUFactorization(in_channels=out_channels2reduce, out_channels=out_channels2, kernel_sizes=[1,3],paddings=[0,1])
        self.branch2_conv2b = ConvBNReLUFactorization(in_channels=out_channels2reduce, out_channels=out_channels2, kernel_sizes=[3,1],paddings=[1,0])

        self.branch3_conv1 = ConvBNReLU(in_channels=in_channels,out_channels=out_channels3reduce,kernel_size=1)
        self.branch3_conv2 = ConvBNReLU(in_channels=out_channels3reduce, out_channels=out_channels3, kernel_size=3,stride=1,padding=1)
        self.branch3_conv3a = ConvBNReLUFactorization(in_channels=out_channels3, out_channels=out_channels3, kernel_sizes=[3, 1],paddings=[1, 0])
        self.branch3_conv3b = ConvBNReLUFactorization(in_channels=out_channels3, out_channels=out_channels3, kernel_sizes=[1, 3],paddings=[0, 1])

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            ConvBNReLU(in_channels=in_channels, out_channels=out_channels4, kernel_size=1),
        )

    def forward(self, x):
        out1 = self.branch1(x)
        x2 = self.branch2_conv1(x)
        out2 = torch.cat([self.branch2_conv2a(x2), self.branch2_conv2b(x2)],dim=1)
        x3 = self.branch3_conv2(self.branch3_conv1(x))
        out3 = torch.cat([self.branch3_conv3a(x3), self.branch3_conv3b(x3)], dim=1)
        out4 = self.branch4(x)
        out = torch.cat([out1, out2, out3, out4], dim=1)
        return out

class InceptionV3ModuleD(nn.Module):
    def __init__(self, in_channels,out_channels1reduce,out_channels1,out_channels2reduce, out_channels2):
        super(InceptionV3ModuleD, self).__init__()

        self.branch1 = nn.Sequential(
            ConvBNReLU(in_channels=in_channels, out_channels=out_channels1reduce, kernel_size=1),
            ConvBNReLU(in_channels=out_channels1reduce, out_channels=out_channels1, kernel_size=3,stride=2,padding=1)
        )

        self.branch2 = nn.Sequential(
            ConvBNReLU(in_channels=in_channels, out_channels=out_channels2reduce, kernel_size=1),
            ConvBNReLU(in_channels=out_channels2reduce, out_channels=out_channels2, kernel_size=3, stride=1, padding=1),
            ConvBNReLU(in_channels=out_channels2, out_channels=out_channels2, kernel_size=3, stride=2,padding=1),
        )

        self.branch3 = nn.MaxPool2d(kernel_size=3,stride=2,padding=1)

    def forward(self, x):
        out1 = self.branch1(x)
        out2 = self.branch2(x)
        out3 = self.branch3(x)
        out = torch.cat([out1, out2, out3], dim=1)
        return out

class InceptionAux(nn.Module):
    def __init__(self, in_channels,out_channels):
        super(InceptionAux, self).__init__()

        self.auxiliary_avgpool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.auxiliary_conv1 = ConvBNReLU(in_channels=in_channels, out_channels=128, kernel_size=1)
        self.auxiliary_conv2 = nn.Conv2d(in_channels=128, out_channels=768, kernel_size=5,stride=1)
        self.auxiliary_dropout = nn.Dropout(p=0.7)
        self.auxiliary_linear1 = nn.Linear(in_features=768, out_features=out_channels)

    def forward(self, x):
        x = self.auxiliary_conv1(self.auxiliary_avgpool(x))
        x = self.auxiliary_conv2(x)
        x = x.view(x.size(0), -1)
        out = self.auxiliary_linear1(self.auxiliary_dropout(x))
        return out

class InceptionV2(nn.Module):
    def __init__(self, num_classes=1000, stage='train'):
        super(InceptionV2, self).__init__()
        self.stage = stage

        self.block1 = nn.Sequential(
            ConvBNReLU(in_channels=3, out_channels=64, kernel_size=7,stride=2,padding=3),
            nn.MaxPool2d(kernel_size=3,stride=2,padding=1),
        )

        self.block2 = nn.Sequential(
            ConvBNReLU(in_channels=64, out_channels=192, kernel_size=3, stride=1, padding=1),
            nn.MaxPool2d(kernel_size=3, stride=2,padding=1),
        )

        self.block3 = nn.Sequential(
            InceptionV2ModuleA(in_channels=192,out_channels1=64,out_channels2reduce=64, out_channels2=64, out_channels3reduce=64, out_channels3=96, out_channels4=32),
            InceptionV2ModuleA(in_channels=256, out_channels1=64, out_channels2reduce=64, out_channels2=96,out_channels3reduce=64, out_channels3=96, out_channels4=64),
            InceptionV3ModuleD(in_channels=320, out_channels1reduce=128, out_channels1=160, out_channels2reduce=64,out_channels2=96),
        )

        self.block4 = nn.Sequential(
            InceptionV2ModuleB(in_channels=576, out_channels1=224, out_channels2reduce=64, out_channels2=96,out_channels3reduce=96, out_channels3=128, out_channels4=128),
            InceptionV2ModuleB(in_channels=576, out_channels1=192, out_channels2reduce=96, out_channels2=128,out_channels3reduce=96, out_channels3=128, out_channels4=128),
            InceptionV2ModuleB(in_channels=576, out_channels1=160, out_channels2reduce=128, out_channels2=160,out_channels3reduce=128, out_channels3=128, out_channels4=128),
            InceptionV2ModuleB(in_channels=576, out_channels1=96, out_channels2reduce=128, out_channels2=192,out_channels3reduce=160, out_channels3=160, out_channels4=128),
            InceptionV3ModuleD(in_channels=576, out_channels1reduce=128, out_channels1=192, out_channels2reduce=192,out_channels2=256),
        )

        self.block5 = nn.Sequential(
            InceptionV2ModuleC(in_channels=1024, out_channels1=352, out_channels2reduce=192, out_channels2=160,out_channels3reduce=160, out_channels3=112, out_channels4=128),
            InceptionV2ModuleC(in_channels=1024, out_channels1=352, out_channels2reduce=192, out_channels2=160,
                               out_channels3reduce=192, out_channels3=112, out_channels4=128)
        )

        self.max_pool = nn.MaxPool2d(kernel_size=7, stride=1)
        self.dropout = nn.Dropout(p=0.5)
        self.linear = nn.Linear(1024, num_classes)

    def forward(self, x):
        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)
        x = self.block4(x)
        x = self.block5(x)
        x = self.max_pool(x)
        x = self.dropout(x)
        x = x.view(x.size(0), -1)
        out = self.linear(x)
        return out

if __name__=='__main__':
    model = InceptionV2()
    print(model)

    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121573936

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。