PolarMask

举报
AI浩 发表于 2021/12/22 22:27:04 2021/12/22
【摘要】 import torch import torch.nn as nn import torchvision def Conv3x3ReLU(in_channels,out_channels): ...
import torch
import torch.nn as nn
import torchvision

def Conv3x3ReLU(in_channels,out_channels):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_channels,out_channels=out_channels,kernel_size=3,stride=1,padding=1),
        nn.ReLU6(inplace=True)
    )

def locLayer(in_channels,out_channels):
    return nn.Sequential(
            Conv3x3ReLU(in_channels=in_channels, out_channels=in_channels),
            Conv3x3ReLU(in_channels=in_channels, out_channels=in_channels),
            Conv3x3ReLU(in_channels=in_channels, out_channels=in_channels),
            Conv3x3ReLU(in_channels=in_channels, out_channels=in_channels),
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1),
        )

def conf_centernessLayer(in_channels,out_channels):
    return nn.Sequential(
        Conv3x3ReLU(in_channels=in_channels, out_channels=in_channels),
        Conv3x3ReLU(in_channels=in_channels, out_channels=in_channels),
        Conv3x3ReLU(in_channels=in_channels, out_channels=in_channels),
        Conv3x3ReLU(in_channels=in_channels, out_channels=in_channels),
        nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1),
    )

class PolarMask(nn.Module):
    def __init__(self, num_classes=21):
        super(PolarMask, self).__init__()
        self.num_classes = num_classes
        resnet = torchvision.models.resnet50()
        layers = list(resnet.children())

        self.layer1 = nn.Sequential(*layers[:5])
        self.layer2 = nn.Sequential(*layers[5])
        self.layer3 = nn.Sequential(*layers[6])
        self.layer4 = nn.Sequential(*layers[7])

        self.lateral5 = nn.Conv2d(in_channels=2048, out_channels=256, kernel_size=1)
        self.lateral4 = nn.Conv2d(in_channels=1024, out_channels=256, kernel_size=1)
        self.lateral3 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1)

        self.upsample4 = nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=4, stride=2, padding=1)
        self.upsample3 = nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=4, stride=2, padding=1)

        self.downsample6 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=2, padding=1)
        self.downsample5 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=2, padding=1)

        self.loc_layer3 = locLayer(in_channels=256,out_channels=36)
        self.conf_centerness_layer3 = conf_centernessLayer(in_channels=256,out_channels=self.num_classes)

        self.loc_layer4 = locLayer(in_channels=256, out_channels=36)
        self.conf_centerness_layer4 = conf_centernessLayer(in_channels=256, out_channels=self.num_classes)

        self.loc_layer5 = locLayer(in_channels=256, out_channels=36)
        self.conf_centerness_layer5 = conf_centernessLayer(in_channels=256, out_channels=self.num_classes)

        self.loc_layer6 = locLayer(in_channels=256, out_channels=36)
        self.conf_centerness_layer6 = conf_centernessLayer(in_channels=256, out_channels=self.num_classes)

        self.loc_layer7 = locLayer(in_channels=256, out_channels=36)
        self.conf_centerness_layer7 = conf_centernessLayer(in_channels=256, out_channels=self.num_classes)

        self.init_params()

    def init_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.layer1(x)
        c3 =x = self.layer2(x)
        c4 =x = self.layer3(x)
        c5 = x = self.layer4(x)

        p5 = self.lateral5(c5)
        p4 = self.upsample4(p5) + self.lateral4(c4)
        p3 = self.upsample3(p4) + self.lateral3(c3)

        p6 = self.downsample5(p5)
        p7 = self.downsample6(p6)

        loc3 = self.loc_layer3(p3)
        conf_centerness3 = self.conf_centerness_layer3(p3)
        conf3, centerness3 = conf_centerness3.split([self.num_classes, 1], dim=1)

        loc4 = self.loc_layer4(p4)
        conf_centerness4 = self.conf_centerness_layer4(p4)
        conf4, centerness4 = conf_centerness4.split([self.num_classes, 1], dim=1)

        loc5 = self.loc_layer5(p5)
        conf_centerness5 = self.conf_centerness_layer5(p5)
        conf5, centerness5 = conf_centerness5.split([self.num_classes, 1], dim=1)

        loc6 = self.loc_layer6(p6)
        conf_centerness6 = self.conf_centerness_layer6(p6)
        conf6, centerness6 = conf_centerness6.split([self.num_classes, 1], dim=1)

        loc7 = self.loc_layer7(p7)
        conf_centerness7 = self.conf_centerness_layer7(p7)
        conf7, centerness7 = conf_centerness7.split([self.num_classes, 1], dim=1)

        locs = torch.cat([loc3.permute(0, 2, 3, 1).contiguous().view(loc3.size(0), -1),
                    loc4.permute(0, 2, 3, 1).contiguous().view(loc4.size(0), -1),
                    loc5.permute(0, 2, 3, 1).contiguous().view(loc5.size(0), -1),
                    loc6.permute(0, 2, 3, 1).contiguous().view(loc6.size(0), -1),
                    loc7.permute(0, 2, 3, 1).contiguous().view(loc7.size(0), -1)],dim=1)

        confs = torch.cat([conf3.permute(0, 2, 3, 1).contiguous().view(conf3.size(0), -1),
                           conf4.permute(0, 2, 3, 1).contiguous().view(conf4.size(0), -1),
                           conf5.permute(0, 2, 3, 1).contiguous().view(conf5.size(0), -1),
                           conf6.permute(0, 2, 3, 1).contiguous().view(conf6.size(0), -1),
                           conf7.permute(0, 2, 3, 1).contiguous().view(conf7.size(0), -1),], dim=1)

        centernesses = torch.cat([centerness3.permute(0, 2, 3, 1).contiguous().view(centerness3.size(0), -1),
                           centerness4.permute(0, 2, 3, 1).contiguous().view(centerness4.size(0), -1),
                           centerness5.permute(0, 2, 3, 1).contiguous().view(centerness5.size(0), -1),
                           centerness6.permute(0, 2, 3, 1).contiguous().view(centerness6.size(0), -1),
                           centerness7.permute(0, 2, 3, 1).contiguous().view(centerness7.size(0), -1), ], dim=1)

        out = (locs, confs, centernesses)
        return out

if __name__ == '__main__':
    model = PolarMask()
    print(model)

    input = torch.randn(1, 3, 800, 1024)
    out = model(input)
    print(out[0].shape)
    print(out[1].shape)
    print(out[2].shape)

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121607259

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。