Numpy实现Adaboost

举报
AI浩 发表于 2021/12/23 00:21:13 2021/12/23
【摘要】 from __future__ import division, print_function import numpy as np import math from sklearn import dat...
from __future__ import division, print_function
import numpy as np
import math
from sklearn import datasets
import matplotlib.pyplot as plt
import pandas as pd

# Import helper functions
from mlfromscratch.utils import train_test_split, accuracy_score, Plot

# Decision stump used as weak classifier in this impl. of Adaboost
class DecisionStump():
    def __init__(self):
        # Determines if sample shall be classified as -1 or 1 given threshold
        self.polarity = 1
        # The index of the feature used to make classification
        self.feature_index = None
        # The threshold value that the feature should be measured against
        self.threshold = None
        # Value indicative of the classifier's accuracy
        self.alpha = None

class Adaboost():
    """Boosting method that uses a number of weak classifiers in 
    ensemble to make a strong classifier. This implementation uses decision
    stumps, which is a one level Decision Tree. 

    Parameters:
    -----------
    n_clf: int
        The number of weak classifiers that will be used. 
    """
    def __init__(self, n_clf=5):
        self.n_clf = n_clf

    def fit(self, X, y):
        n_samples, n_features = np.shape(X)

        # Initialize weights to 1/N
        w = np.full(n_samples, (1 / n_samples))
        
        self.clfs = []
        # Iterate through classifiers
        for _ in range(self.n_clf):
            clf = DecisionStump()
            # Minimum error given for using a certain feature value threshold
            # for predicting sample label
            min_error = float('inf')
            # Iterate throught every unique feature value and see what value
            # makes the best threshold for predicting y
            for feature_i in range(n_features):
                feature_values = np.expand_dims(X[:, feature_i], axis=1)
                unique_values = np.unique(feature_values)
                # Try every unique feature value as threshold
                for threshold in unique_values:
                    p = 1
                    # Set all predictions to '1' initially
                    prediction = np.ones(np.shape(y))
                    # Label the samples whose values are below threshold as '-1'
                    prediction[X[:, feature_i] < threshold] = -1
                    # Error = sum of weights of misclassified samples
                    error = sum(w[y != prediction])
                    
                    # If the error is over 50% we flip the polarity so that samples that
                    # were classified as 0 are classified as 1, and vice versa
                    # E.g error = 0.8 => (1 - error) = 0.2
                    if error > 0.5:
                        error = 1 - error
                        p = -1

                    # If this threshold resulted in the smallest error we save the
                    # configuration
                    if error < min_error:
                        clf.polarity = p
                        clf.threshold = threshold
                        clf.feature_index = feature_i
                        min_error = error
            # Calculate the alpha which is used to update the sample weights,
            # Alpha is also an approximation of this classifier's proficiency
            clf.alpha = 0.5 * math.log((1.0 - min_error) / (min_error + 1e-10))
            # Set all predictions to '1' initially
            predictions = np.ones(np.shape(y))
            # The indexes where the sample values are below threshold
            negative_idx = (clf.polarity * X[:, clf.feature_index] < clf.polarity * clf.threshold)
            # Label those as '-1'
            predictions[negative_idx] = -1
            # Calculate new weights 
            # Missclassified samples gets larger weights and correctly classified samples smaller
            w *= np.exp(-clf.alpha * y * predictions)
            # Normalize to one
            w /= np.sum(w)

            # Save classifier
            self.clfs.append(clf)

    def predict(self, X):
        n_samples = np.shape(X)[0]
        y_pred = np.zeros((n_samples, 1))
        # For each classifier => label the samples
        for clf in self.clfs:
            # Set all predictions to '1' initially
            predictions = np.ones(np.shape(y_pred))
            # The indexes where the sample values are below threshold
            negative_idx = (clf.polarity * X[:, clf.feature_index] < clf.polarity * clf.threshold)
            # Label those as '-1'
            predictions[negative_idx] = -1
            # Add predictions weighted by the classifiers alpha
            # (alpha indicative of classifier's proficiency)
            y_pred += clf.alpha * predictions

        # Return sign of prediction sum
        y_pred = np.sign(y_pred).flatten()

        return y_pred


def main():
    data = datasets.load_digits()
    X = data.data
    y = data.target

    digit1 = 1
    digit2 = 8
    idx = np.append(np.where(y == digit1)[0], np.where(y == digit2)[0])
    y = data.target[idx]
    # Change labels to {-1, 1}
    y[y == digit1] = -1
    y[y == digit2] = 1
    X = data.data[idx]

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

    # Adaboost classification with 5 weak classifiers
    clf = Adaboost(n_clf=5)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)
    print ("Accuracy:", accuracy)

    # Reduce dimensions to 2d using pca and plot the results
    Plot().plot_in_2d(X_test, y_pred, title="Adaboost", accuracy=accuracy)


if __name__ == "__main__":
    main()


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/120664851

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。