ByteTrack 多目标跟踪 测试笔记

举报
风吹稻花香 发表于 2021/11/10 00:17:06 2021/11/10
【摘要】 这个目前只能做行人跟踪,不能做车辆或者别的物体跟踪。 以下简介转自: ByteTrack: Multi-Object Tracking by Associating Every Detection Box - 知乎 1. Motivation Tracking-by-detection是MOT中的一个经典高效的流派,通过相似度(...

这个目前只能做行人跟踪,不能做车辆或者别的物体跟踪。

以下简介转自:

ByteTrack: Multi-Object Tracking by Associating Every Detection Box - 知乎

1. Motivation

Tracking-by-detection是MOT中的一个经典高效的流派,通过相似度(位置、外观、运动等信息)来关联检测框得到跟踪轨迹。由于视频中场景的复杂性,检测器无法得到完美的检测结果。为了处理true positive/false positive的trade-off,目前大部分MOT方法会选择一个阈值,只保留高于这个阈值的检测结果来做关联得到跟踪结果,低于这个阈值的检测结果直接丢弃。但是这样做合理吗?答案是否定的。黑格尔说过:“存在即合理。”低分检测框往往预示着物体的存在(例如遮挡严重的物体)。简单地把这些物体丢弃会给MOT带来不可逆转的错误,包括大量的漏检和轨迹中断,降低整体跟踪性能。

2. BYTE

为了解决之前方法丢弃低分检测框的不合理性,我们提出了一种简单、高效、通用的数据关联方法BYTE (each detection box is a basic unit of the tracklet, as byte in computer program)。直接地将低分框和高分框放在一起与轨迹关联显然是不可取的,会带来很多的背景(false positive)。BYTE将高分框和低分框分开处理,利

文章来源: blog.csdn.net,作者:AI视觉网奇,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/jacke121/article/details/121219743

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。