Canny 边缘提取相关知识学习,图像处理第 32 篇博客

举报
梦想橡皮擦 发表于 2021/09/19 19:07:49 2021/09/19
【摘要】 Python OpenCV 365 天学习计划,与橡皮擦一起进入图像领域吧。本篇博客是这个系列的第 32 篇。 基础知识铺垫Canny边缘提取的目标是找到一个最优的边缘检测算法,从这里能看出,目标依旧是提取边缘。它的原理是:检测出图像中所有灰度值变化较大的点,这些点进行连接形成线条,线条的集合就是图像的边缘。该边缘检测比较流行,我们进行一下学习吧。在这里依旧补充一下图像里面什么是边缘:直观上...

Python OpenCV 365 天学习计划,与橡皮擦一起进入图像领域吧。本篇博客是这个系列的第 32 篇。

基础知识铺垫

Canny边缘提取的目标是找到一个最优的边缘检测算法,从这里能看出,目标依旧是提取边缘。

它的原理是:检测出图像中所有灰度值变化较大的点,这些点进行连接形成线条,线条的集合就是图像的边缘。

该边缘检测比较流行,我们进行一下学习吧。

在这里依旧补充一下图像里面什么是边缘:

直观上图像的边缘是灰度值突然改变的地方,边缘产生有以下几个原因:

  • 表面法向量不连续(新知识,法向量:垂直于平面的直线所表示的向量为该平面的法向量);
  • 深度的不连续;
  • 表面颜色的不连续;
  • 光照的不连续。

好的边缘提取器的标准

该标准适用于检测所有边缘提取算法

  • Good detection:既不能过多的检测出噪声,也不能丢失边缘信息;
  • Good localization:边缘应该尽可能和真实图像边缘接近;
  • Single response:边缘提取的尽可能细,每个只占一个像素点。

Canny 边缘检测的相关说明

首先看一下网上对其步骤的说明:

  1. 图像降噪,使用高斯滤波器,消除噪声,使用 GaussianBlur 函数;
  2. 计算图像梯度,每个像素的梯度和方向都要计算,使用 SobelScharr 函数;
  3. 非极大值抑制,消除边缘检测带来的杂散响应(新名词);
  4. 阈值筛选,高低阈值输出二值图像。

Canny 函数原型

edges = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]])
edges =	cv.Canny(dx, dy, threshold1, threshold2[, edges[, L2gradient]]

参数说明如下:

  • image:输入图像;
  • threshold1:低阈值;
  • threshold2:高阈值;
  • edges:这个参数就比较迷了,输出的边缘图(为何不用 dst);
  • apertureSize:算子大小,默认值为 3;
  • L2gradient:计算图像梯度的方式。

官方参数说明可以点击学习

测试代码如下:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
src = cv.imread("test1.jpg", 0)
# 图像降噪
src = cv.GaussianBlur(src, (3, 3), 0)
# 图像梯度
xgrad = cv.Sobel(src, cv.CV_16SC1, 1, 0)
ygrad = cv.Sobel(src, cv.CV_16SC1, 0, 1)

# Canny 边缘检测,50 为低阈值,150 为高阈值,参数必须符合1:3或者1:2
canny = cv.Canny(xgrad, ygrad, 50, 150)
# 直接用灰度图像
# canny = cv.Canny(gray, 50, 150)

imgs = np.hstack([src, canny])
plt.figure(figsize=(20, 10))
plt.imshow(imgs, "gray")
plt.axis('off')
plt.show()

运行之后,可以发现图像边缘提取的还可以。

高低阈值筛选
如果 lowhigh 为阈值,那高于 high 的都保留,小于 low 的都丢弃,最终即可输出二值图像,推荐高低阈值比例为 1:3 或者 1:2

上面代码还遗留一个小问题,即使用灰度图像,如果读取进来的图片没有进行该转换,最终得到的效果会有差异,效果图如下:

官方手册相关知识可以点击

加入滑动条

对于这种涉及值的操作,都可以使用滑动条解决问题。

修改成动态调参代码与效果如下:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
src = cv.imread("test1.jpg")

cv.namedWindow("bar", cv.WINDOW_AUTOSIZE)

low_threshold = 0
high_threshold = 0


def do(x):
    global high_threshold
    if x != 0:
        high_threshold = 3 * x


cv.createTrackbar("low_threshold", "bar", 10, 100, do)

# 图像降噪
src = cv.GaussianBlur(src, (3, 3), 0)

gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# 图像梯度
xgrad = cv.Sobel(gray, cv.CV_16SC1, 1, 0)
ygrad = cv.Sobel(gray, cv.CV_16SC1, 0, 1)

while True:
    low_threshold = cv.getTrackbarPos("low_threshold", "bar")
    canny = cv.Canny(gray, low_threshold, high_threshold)
    cv.imshow("canny", canny)
    if cv.waitKey(1) & 0xFF == 27:
        break

cv.destroyAllWindows()

相关数学知识挖坑

本部分用于记录本文中提及的相关数学原理,后续逐步埋坑。

  • x 轴与 y 轴方向上的一阶偏导数;
  • 反三角函数;
  • 高斯滤波器公式;
  • 法向量。

橡皮擦的小节

希望今天的 1 个小时(今天内容有点多,不一定可以看完),你有所收获,我们下篇博客见~

今天是持续写作的第 73 / 100 天。
如果你有想要交流的想法、技术,欢迎在评论区留言。


博主 ID:梦想橡皮擦,希望大家点赞评论收藏

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。