Python OpenCV 彩色图像与灰度图像的转换
今天是持续写作的第 41 / 100 天。
如果你有想要交流的想法、技术,欢迎在评论区留言。
想不到,今天学习的竟然还是彩色图像与灰度图像的转换。经过前面的学习,你们和我一样,有没有掌握 2 种彩色图像转换成灰度图像的方式,2021 年第一天在学习 1 种。
彩色图像转换为灰度图像
第一种方式通过 imread 读取图像的时候直接设置参数为 0 ,自动转换彩色图像为灰度图像
第二种方式,可以通过 split 进行通道分离,或者叫做读取单个通道,也可以将一个彩色图像分离成 3 个单通道的灰度图像
今天要学习的方法,是通过一个叫做 cvtColor
的方法实现该操作。
cv2.cvtColor()
方法用于将图像从一种颜色空间转换为另一种颜色空间。
OpenCV 提供了 150 多种 color-space 转换方法。多到用不过来~
该方法的语法格式为:
cv2.cvtColor(src, code[, dst[, dstCn]])
参数:
- src:它是要更改其色彩空间的图像。
- code:它是色彩空间转换代码。
- dst:它是与 src 图像大小和深度相同的输出图像,可选参数。
- dstCn:它是目标图像中的频道数。如果参数为 0,则通道数自动从 src 和代码得出,可选参数。
参数翻译成中文,也找到了
cvtColor(src,dst,code,dstCn) ===> (原图像,color转化代码,输出图像,输出通道)
转换灰度图代码如下:
import cv2
# path
path = './7_1.jpg'
# 读取图片
src = cv2.imread(path)
# 图片展示窗口名称
window_name = 'Image'
# BGR 转换成灰度图
image = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
cv2.imshow(window_name, image)
cv2.waitKey()
也看到了 HSV 格式图片,转换结果如下,有点吓人,顺便转换了其他的一些格式:
import cv2
import matplotlib.pyplot as plt
# path
path = './7_1.jpg'
# 读取图片
src = cv2.imread(path)
# 图片展示窗口名称
window_name = 'Image'
# BGR 转换成 RGB
image1 = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)
# BGR 转换成 Gray
image2 = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# BGR 转换成 HSV
image3 = cv2.cvtColor(src, cv2.COLOR_BGR2HSV)
plt.subplot(1, 3, 1)
plt.imshow(image1)
plt.title("RGB")
plt.subplot(1, 3, 2)
plt.imshow(image2,"gray")
plt.title("GRAY")
plt.subplot(1, 3, 3)
plt.imshow(image3,"hsv")
plt.title("hsv")
plt.show()
伪彩色图像
彩色图片可以变成灰度图,那相应的灰度图也可以变成彩色的,当然这里说的是伪彩色图像。
这部分内容由于目前应用场景不明确,给大家贴一下我学习过程中看到的博客吧。
https://blog.csdn.net/kingroc/article/details/101302997
https://blog.csdn.net/sns1991sns/article/details/102838303
https://blog.csdn.net/xiaxuesong666/article/details/79522904
关于伪彩色图像的说明,在百度百科可以直接查阅到。
OpenCV 尾声
1 个小时又过去了,对 Python OpenCV 相关的知识点,你掌握了吗?
空闲之余,可以订阅橡皮擦的爬虫百例课程学习爬虫知识。
如果你想跟博主建立亲密关系,可以关注同名公众号 梦想橡皮擦,近距离接触一个逗趣的互联网高级网虫。
博主 ID:梦想橡皮擦,希望大家点赞、评论、收藏。
- 点赞
- 收藏
- 关注作者
评论(0)