grad can be implicitly created only for scalar outputs

举报
风吹稻花香 发表于 2021/07/22 22:45:36 2021/07/22
【摘要】 grad can be implicitly created only for scalar outputs 自定义损失函数时报错: import torchimport torch.nn as nnimport numpy as np class CrossEntropyLoss(nn.Module): def __init__(self): super(C...

grad can be implicitly created only for scalar outputs

自定义损失函数时报错:


      import torch
      import torch.nn as nn
      import numpy as np
      class CrossEntropyLoss(nn.Module):
      def __init__(self):
       super(CrossEntropyLoss, self).__init__()
      def forward(self, output, label):
       first = [-output[i][label[i]] for i in range(label.size()[0])]
       first_ = 0
      for i in range(len(first)):
       first_ += first[i]
       second = torch.exp(output)
       second = torch.sum(second, dim=1)
       second = torch.log(second + 1e-5)#**2
       second = torch.sum(second)
       loss = 1 / label.size()[0] * (first_ + second)
      return loss
      if __name__ == '__main__':
       output = torch.randn(3,3, 5, requires_grad=True)
       label = torch.empty((3,5), dtype=torch.long).random_(3)
      # x=0.9
      # output = to
  
 

文章来源: blog.csdn.net,作者:AI视觉网奇,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/jacke121/article/details/118997850

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。