ALGORITHMS FOR SOURCE LOCALIZATION

举报
李锐博恩 发表于 2021/07/15 04:24:52 2021/07/15
【摘要】 Two approaches for source localization, namely, nonlinear and linear, are presented in Sections 2.3.1 and 2.3.2 , respectively. Generally speaking, the nonlinear methodology [13 – 16] direc...

Two approaches for source localization, namely, nonlinear and linear, are presented in Sections 2.3.1 and 2.3.2 , respectively. Generally speaking, the nonlinear methodology [13 – 16] directly employs Equation 2.1 to solve for x by minimizing the least squares ( LS ) or the weighted least squares ( WLS ) cost function constructed from the following error function:

where bold{tilde x} = [tilde x, tilde y]^T is the optimization variable for x , which corresponds to the NLS or ML estimator, respectively. On the other hand, the linear techniques convert Equation 2.1 into a set of linear equations in bold{x}:

where b and A are available, while q is the transformed noise vector. Based on Equation 2.37 , we construct

Applying the LS or WLS techniques on Equation 2.38 results in the LLS [17, 18] ,WLLS [19 – 22] and subspace [23 – 26] estimators. A comparison summary for the position estimators examined in this chapter is provided in Table 2.3 .

 

文章来源: reborn.blog.csdn.net,作者:李锐博恩,版权归原作者所有,如需转载,请联系作者。

原文链接:reborn.blog.csdn.net/article/details/83585354

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。