【 Notes 】ML ALGORITHMS of TOA - Based Positioning

举报
李锐博恩 发表于 2021/07/15 06:31:32 2021/07/15
【摘要】 这篇博文和NLS方法博文行文思路类似:【 Notes 】NLS ALGORITHMS of TOA - Based Positioning ML方法是NLS方法的一个推广版本,具体接着看: Assuming that the error distribution is known, the ML approach maximizes the PDFs of TOA mea...

这篇博文和NLS方法博文行文思路类似:【 Notes 】NLS ALGORITHMS of TOA - Based Positioning

ML方法是NLS方法的一个推广版本,具体接着看:

Assuming that the error distribution is known, the ML approach maximizes the PDFs of TOA measurements to obtain the source location. When the disturbances in the measurements are zero - mean Gaussian distributed, it is shown in the following that maximization of Equations 1  will correspond to a weighted version of the NLS scheme.

l 个r_{TOA,l}的PDF:

向量形式:

                           (1)

the covariance matrix for  bold{r_{TOA}}



To facilitate the maximization of Equation (1) , we consider its logarithmic version:

               (2)

As the first term is independent of x , maximizing Equation (2) is in fact equivalent to minimizing the second term, the ML estimate is

                                                        (3)

or we can write

                                                                                                                          (4)

where bold{ J_{ML,TOA}(tilde x)} denotes the ML cost function for TOA - based positioning, which has the form of

                                                          (5)

Comparing Equations (4) and (5) , it is observed that in the presence of zero - mean Gaussian noise, the ML estimator generalizes the NLS method because the former is a weighted version of the latter.

比较等式(4)和(5),观察到在存在零均值高斯噪声的情况下,ML估计器推广了NLS方法,因为前者是后者的加权版本。

Intuitively speaking, when sigma^2_{TOA,l} is large, which corresponds to a large noise inr_{TOA,l} , a small weight of 1/sigma^2_{TOA,l} is employed in the squared term of 

and vice versa. 

When bold{C^{-1}_{TOA}} is proportional to the identity matrix or sigma^2_{TOA,l},l = 1,2,..,L are identical, the ML estimator is reduced to the NLS method. To compute Equation (4) , we can follow the numerical methods discussed in the NLS approach. In particular, the Newton – Raphson procedure for Equation (4) is

                              (6)

                                                            (7)

                   (8)

               (9)

               (10)

                   (11)

On the other hand, the corresponding Gauss – Newton and steepest descent algorithms are, respectively,

       (12)

                      (13)

下面的博文,将对这三种方法进行TOA定位仿真。

 

 

 

 

 

 

 

文章来源: reborn.blog.csdn.net,作者:李锐博恩,版权归原作者所有,如需转载,请联系作者。

原文链接:reborn.blog.csdn.net/article/details/84140774

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。