Cordic算法——verilog实现

举报
李锐博恩 发表于 2021/07/15 03:03:18 2021/07/15
3.1k+ 0 0
【摘要】   转载自:https://www.cnblogs.com/rouwawa/p/7102173.html   上两篇博文Cordic算法——圆周系统之旋转模式、Cordic算法——圆周系统之向量模式做了理论分析和实现,但是所用到的变量依然是浮点型,而cordic真正的用处是基于FPGA等只能处理定点的平台。只需将满足精度的浮点数,放大2^n倍,取整,...

转载自:https://www.cnblogs.com/rouwawa/p/7102173.html

上两篇博文Cordic算法——圆周系统之旋转模式Cordic算法——圆周系统之向量模式做了理论分析和实现,但是所用到的变量依然是浮点型,而cordic真正的用处是基于FPGA等只能处理定点的平台。只需将满足精度的浮点数,放大2^n倍,取整,再进行处理。

1. 旋转模式

假设要通过FPGA计算极坐标(55.6767°,1)的直角坐标。首先,角度值为浮点数,需要进行放大处理,放大10000倍。则预设的旋转角度同样要放大10000倍。

实现伪旋转(忽略模长补偿因子)的代码如下所示,注意,因为是整型运算,起始旋转时x放大了2^15,放大倍数决定计算精度,满足需求即可。最后得到的x,y在缩小2^15,即得到伪旋转后的x,y。最后进行模长波长运算(因为是浮点,同样需要放大)。


      #include <stdio.h>
      #include <stdlib.h>
      int cordic_c(int a,int r);
      int x = 32768, y = 0; //以X轴为旋转起始点,放大倍数2^15
      int main(viod)
      {
      int remain = cordic_c(556767,1); //极坐标值(极角,极径)
      printf("旋转角度误差:%d, 直角坐标:x = %d, y = %d\n",remain,x,y);
      return 0;
      }
      int cordic_c(int a,int r)
      {
      const int theta[] = {450000,265651,140362,71250,35763,17899,8952,4476,2238,1119,560,280,140,70,35,17,9,4,2,1}; //旋转角度
      int i = 0;
      int x_temp = 0, y_temp = 0;
      int angle_new = 0; //旋转后终止角度
      int angle_remain = a;   //旋转后,剩余角度
      char detection; //旋转方向
      for( i=0; i<20;i++)
       {
      if(angle_remain > 0)
       {
       angle_new = angle_new + theta[i];
       angle_remain = a - angle_new;
       x_temp = (x - (y >>i));
       y_temp = (y + (x >> i));
       x = x_temp;
       y = y_temp;
       detection = '+';
       }
      else
       {
       angle_new = angle_new - theta[i];
       angle_remain = a - angle_new;
       x_temp = (x + (y>>i));
       y_temp = (y - (x>>i));
       x = x_temp;
       y = y_temp;
       detection = '-';
       }
      printf(" x = %-8d, y = %-8d, 旋转次数 = %-8d 旋转角度 = %-12d 旋转方向:%-8c 终点角度 = %-8d\n", x,y,i+1, theta[i],detection,angle_new);
       }
       x = r*x;
       y = r*y;
      return angle_remain;
      }
  
 

完整的FPGA实现过程,包含预处理和后处理,支持{-π,π}的角度,采用流水线方式实现,Verilog完整代码如下,注意在移位过程中要用算术移位(>>>),才能保证带符号的数正确移位:


      /****************************************************/
      //预处理
      module Cordic_Pre(
       clk,
       rst_n,
       phi,
       phi_pre,
       quadrant_flag
       );
      /****************************************************/
       input clk;
       input rst_n;
       input signed [23:0] phi;
       output signed [23:0] phi_pre; //预处理后的角度值
       output [1:0] quadrant_flag; //象限标记
      /****************************************************/
       parameter ANGLE_P90 = 24'sd90_0000, //输入角度范围{-pi,pi},角度值放大了10000倍
       ANGLE_N90 = -24'sd90_0000,
       ANGLE_0 = 24'sd00_0000;
      /****************************************************/
       reg signed [23:0] phi_pre_r;
       reg [1:0] quadrant_flag_r;
      /****************************************************/
       always @(posedge clk or negedge rst_n)
       begin
       if(rst_n == 1'b0)
       begin
       phi_pre_r <= 24'sd0;
       quadrant_flag_r <= 2'b00;
       end
       else if(phi >= ANGLE_0 && phi <= ANGLE_P90) //第一象限
       begin
       phi_pre_r <= phi;
       quadrant_flag_r <= 2'b01;
       end
       else if(phi > ANGLE_P90 ) //第二象限 
       begin
       phi_pre_r <= phi - ANGLE_P90;
       quadrant_flag_r <= 2'b10;
       end
       else if(phi < ANGLE_0 && phi >= ANGLE_N90) //第四象限 
       begin
       phi_pre_r <= phi;
       quadrant_flag_r <= 2'b00;
       end
       else
       begin //第三象限
       phi_pre_r <= phi - ANGLE_N90;
       quadrant_flag_r <= 2'b11;
       end
       end
      /****************************************************/
       assign phi_pre = phi_pre_r;
       assign quadrant_flag = quadrant_flag_r;
      /****************************************************/
      endmodule
  
 

我的设计要求精度较高,所以采用20次旋转,旋转过程的代码如下:


      /****************************************************/
      module  Cordic_Rotate(
       clk,
       rst_n,
       phi_pre,
       quadrant_flag,
       ret_x,
       ret_y,
       quadrant
       );
      /****************************************************/
       input clk;
       input rst_n;
       input   signed  [23:0]  phi_pre;
       input [1:0]   quadrant_flag;
       output  signed  [16:0]  ret_x;
       output  signed  [16:0]  ret_y;
       output [1:0]   quadrant;
      /****************************************************/
       parameter X_ORIGN = 17'sd32768;   //旋转时x的起始大小,根据精度要求而定。
       //每次旋转的固定角度值
       parameter ANGLE_1 = 24'sd450000,  ANGLE_2 = 24'sd265651,
       ANGLE_3 = 24'sd140362,  ANGLE_4 = 24'sd71250,
       ANGLE_5 = 24'sd35763,   ANGLE_6 = 24'sd17899,
       ANGLE_7 = 24'sd8952, ANGLE_8 = 24'sd4476,
       ANGLE_9 = 24'sd2238, ANGLE_10 = 24'sd1119,
       ANGLE_11 = 24'sd560, ANGLE_12 = 24'sd280,
       ANGLE_13 = 24'sd140, ANGLE_14 = 24'sd70,
       ANGLE_15 = 24'sd35, ANGLE_16 = 24'sd17,
       ANGLE_17 = 24'sd9, ANGLE_18 = 24'sd4,
       ANGLE_19 = 24'sd2, ANGLE_20 = 24'sd1;
      /****************************************************/
       reg signed  [16:0]  x_r [20:0];
       reg signed  [16:0]  y_r [20:0];
       reg signed  [23:0]  angle_remain [20:0];
       reg signed  [1:0]   quadrant_r [20:0];
      /****************************************************/
      //旋转的流水线过程
       always @(posedge clk or negedge rst_n)
       begin
       if(rst_n == 1'b0)
       begin
       x_r[0] <= 17'sd0;
      y_r[0] <= 17'sd0;
      angle_remain[0] <= 24'sd0;
      end
      else
      begin
      x_r[0] <= X_ORIGN;
      y_r[0] <= 17'sd0;
      angle_remain[0] <= phi_pre;
      end
      end
       //第1次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[1] <= 17'sd0;
      y_r[1] <= 17'sd0;
      angle_remain[1] <= 24'sd0;
      end
      else if(angle_remain[0] > 24'sd0)
       begin
       x_r[1] <= x_r[0] - y_r[0];
      y_r[1] <= y_r[0] + x_r[0];
      angle_remain[1] <= angle_remain[0] - ANGLE_1;
      end
      else
      begin
      x_r[1] <= x_r[0] + y_r[0];
      y_r[1] <= y_r[0] - x_r[0];
      angle_remain[1] <= angle_remain[0] + ANGLE_1;
      end
      end
       //第2次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[2] <= 17'sd0;
      y_r[2] <= 17'sd0;
      angle_remain[2] <= 24'sd0;
      end
      else if(angle_remain[1] > 24'sd0) //比较时,符号标记s必须带上,对结果有影响
       begin
       x_r[2] <= x_r[1] - (y_r[1] >>> 1);
       y_r[2] <= y_r[1] + (x_r[1] >>> 1); //二元加的优先级高于算术移位
       angle_remain[2] <= angle_remain[1] - ANGLE_2;
      end
      else
      begin
      x_r[2] <= x_r[1] + (y_r[1] >>> 1);
       y_r[2] <= y_r[1] - (x_r[1] >>> 1);
       angle_remain[2] <= angle_remain[1] + ANGLE_2;
      end
      end
       //第3次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[3] <= 17'sd0;
      y_r[3] <= 17'sd0;
      angle_remain[3] <= 24'sd0;
      end
      else if(angle_remain[2] > 24'sd0)
       begin
       x_r[3] <= x_r[2] - (y_r[2] >>> 2);
       y_r[3] <= y_r[2] + (x_r[2] >>> 2);
       angle_remain[3] <= angle_remain[2] - ANGLE_3;
      end
      else
      begin
      x_r[3] <= x_r[2] + (y_r[2] >>> 2);
       y_r[3] <= y_r[2] - (x_r[2] >>> 2);
       angle_remain[3] <= angle_remain[2] + ANGLE_3;
      end
      end
       //第4次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[4] <= 17'sd0;
      y_r[4] <= 17'sd0;
      angle_remain[4] <= 24'sd0;
      end
      else if(angle_remain[3] > 24'sd0)
       begin
       x_r[4] <= x_r[3] - (y_r[3] >>> 3);
       y_r[4] <= y_r[3] + (x_r[3] >>> 3);
       angle_remain[4] <= angle_remain[3] - ANGLE_4;
      end
      else
      begin
      x_r[4] <= x_r[3] + (y_r[3] >>> 3);
       y_r[4] <= y_r[3] - (x_r[3] >>> 3);
       angle_remain[4] <= angle_remain[3] + ANGLE_4;
      end
      end
       //第5次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[5] <= 17'sd0;
      y_r[5] <= 17'sd0;
      angle_remain[5] <= 24'sd0;
      end
      else if(angle_remain[4] > 24'sd0)
       begin
       x_r[5] <= x_r[4] - (y_r[4] >>> 4);
       y_r[5] <= y_r[4] + (x_r[4] >>> 4);
       angle_remain[5] <= angle_remain[4] - ANGLE_5;
      end
      else
      begin
      x_r[5] <= x_r[4] + (y_r[4] >>> 4);
       y_r[5] <= y_r[4] - (x_r[4] >>> 4);
       angle_remain[5] <= angle_remain[4] + ANGLE_5;
      end
      end
       //第6次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[6] <= 17'sd0;
      y_r[6] <= 17'sd0;
      angle_remain[6] <= 24'sd0;
      end
      else if(angle_remain[5] > 24'sd0)
       begin
       x_r[6] <= x_r[5] - (y_r[5] >>> 5);
       y_r[6] <= y_r[5] + (x_r[5] >>> 5);
       angle_remain[6] <= angle_remain[5] - ANGLE_6;
      end
      else
      begin
      x_r[6] <= x_r[5] + (y_r[5] >>> 5);
       y_r[6] <= y_r[5] - (x_r[5] >>> 5);
       angle_remain[6] <= angle_remain[5] + ANGLE_6;
      end
      end
       //第7次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[7] <= 17'sd0;
      y_r[7] <= 17'sd0;
      angle_remain[7] <= 24'sd0;
      end
      else if(angle_remain[6] > 24'sd0)
       begin
       x_r[7] <= x_r[6] - (y_r[6] >>> 6);
       y_r[7] <= y_r[6] + (x_r[6] >>> 6);
       angle_remain[7] <= angle_remain[6] - ANGLE_7;
      end
      else
      begin
      x_r[7] <= x_r[6] + (y_r[6] >>> 6);
       y_r[7] <= y_r[6] - (x_r[6] >>> 6);
       angle_remain[7] <= angle_remain[6] + ANGLE_7;
      end
      end
       //第8次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[8] <= 17'sd0;
      y_r[8] <= 17'sd0;
      angle_remain[8] <= 24'sd0;
      end
      else if(angle_remain[7] > 24'sd0)
       begin
       x_r[8] <= x_r[7] - (y_r[7] >>> 7);
       y_r[8] <= y_r[7] + (x_r[7] >>> 7);
       angle_remain[8] <= angle_remain[7] - ANGLE_8;
      end
      else
      begin
      x_r[8] <= x_r[7] + (y_r[7] >>> 7);
       y_r[8] <= y_r[7] - (x_r[7] >>> 7);
       angle_remain[8] <= angle_remain[7] + ANGLE_8;
      end
      end
       //第9次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[9] <= 17'sd0;
      y_r[9] <= 17'sd0;
      angle_remain[9] <= 24'sd0;
      end
      else if(angle_remain[8] > 24'sd0)
       begin
       x_r[9] <= x_r[8] - (y_r[8] >>> 8);
       y_r[9] <= y_r[8] + (x_r[8] >>> 8);
       angle_remain[9] <= angle_remain[8] - ANGLE_9;
      end
      else
      begin
      x_r[9] <= x_r[8] + (y_r[8] >>> 8);
       y_r[9] <= y_r[8] - (x_r[8] >>> 8);
       angle_remain[9] <= angle_remain[8] + ANGLE_9;
      end
      end
       //第10次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[10] <= 17'sd0;
      y_r[10] <= 17'sd0;
      angle_remain[10] <= 24'sd0;
      end
      else if(angle_remain[9] > 24'sd0)
       begin
       x_r[10] <= x_r[9] - (y_r[9] >>> 9);
       y_r[10] <= y_r[9] + (x_r[9] >>> 9);
       angle_remain[10] <= angle_remain[9] - ANGLE_10;
      end
      else
      begin
      x_r[10] <= x_r[9] + (y_r[9] >>> 9);
       y_r[10] <= y_r[9] - (x_r[9] >>> 9);
       angle_remain[10] <= angle_remain[9] + ANGLE_10;
      end
      end
       //第11次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[11] <= 17'sd0;
      y_r[11] <= 17'sd0;
      angle_remain[11] <= 24'sd0;
      end
      else if(angle_remain[10] > 24'sd0)
       begin
       x_r[11] <= x_r[10] - (y_r[10] >>> 10);
       y_r[11] <= y_r[10] + (x_r[10] >>> 10);
       angle_remain[11] <= angle_remain[10] - ANGLE_11;
      end
      else
      begin
      x_r[11] <= x_r[10] + (y_r[10] >>> 10);
       y_r[11] <= y_r[10] - (x_r[10] >>> 10);
       angle_remain[11] <= angle_remain[10] + ANGLE_11;
      end
      end
       //第12次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[12] <= 17'sd0;
      y_r[12] <= 17'sd0;
      angle_remain[12] <= 24'sd0;
      end
      else if(angle_remain[11] > 24'sd0)
       begin
       x_r[12] <= x_r[11] - (y_r[11] >>> 11);
       y_r[12] <= y_r[11] + (x_r[11] >>> 11);
       angle_remain[12] <= angle_remain[11] - ANGLE_12;
      end
      else
      begin
      x_r[12] <= x_r[11] + (y_r[11] >>> 11);
       y_r[12] <= y_r[11] - (x_r[11] >>> 11);
       angle_remain[12] <= angle_remain[11] + ANGLE_12;
      end
      end
       //第13次旋转
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[13] <= 17'sd0;
      y_r[13] <= 17'sd0;
      angle_remain[13] <= 24'sd0;
      end
      else if(angle_remain[12] > 24'sd0)
       begin
       x_r[13] <= x_r[12] - (y_r[12] >>> 12);
       y_r[13] <= y_r[12] + (x_r[12] >>> 12);
       angle_remain[13] <= angle_remain[10] - ANGLE_13;
      end
      else
      begin
      x_r[13] <= x_r[12] + (y_r[12] >>> 12);
       y_r[13] <= y_r[12] - (x_r[12] >>> 12);
       angle_remain[13] <= angle_remain[12] + ANGLE_13;
      end
      end
       //第14次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[14] <= 17'sd0;
      y_r[14] <= 17'sd0;
      angle_remain[14] <= 24'sd0;
      end
      else if(angle_remain[13] > 24'sd0)
       begin
       x_r[14] <= x_r[13] - (y_r[13] >>> 13);
       y_r[14] <= y_r[13] + (x_r[13] >>> 13);
       angle_remain[14] <= angle_remain[13] - ANGLE_14;
      end
      else
      begin
      x_r[14] <= x_r[13] + (y_r[13] >>> 13);
       y_r[14] <= y_r[13] - (x_r[13] >>> 13);
       angle_remain[14] <= angle_remain[13] + ANGLE_14;
      end
      end
       //第15次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[15] <= 17'sd0;
      y_r[15] <= 17'sd0;
      angle_remain[15] <= 24'sd0;
      end
      else if(angle_remain[14] > 24'sd0)
       begin
       x_r[15] <= x_r[14] - (y_r[14] >>> 14);
       y_r[15] <= y_r[14] + (x_r[14] >>> 14);
       angle_remain[15] <= angle_remain[14] - ANGLE_15;
      end
      else
      begin
      x_r[15] <= x_r[14] + (y_r[14] >>> 14);
       y_r[15] <= y_r[14] - (x_r[14] >>> 14);
       angle_remain[15] <= angle_remain[14] + ANGLE_15;
      end
      end
       //第16次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[16] <= 17'sd0;
      y_r[16] <= 17'sd0;
      angle_remain[16] <= 24'sd0;
      end
      else if(angle_remain[15] > 24'sd0)
       begin
       x_r[16] <= x_r[15] - (y_r[15] >>> 15);
       y_r[16] <= y_r[15] + (x_r[15] >>> 15);
       angle_remain[16] <= angle_remain[15] - ANGLE_16;
      end
      else
      begin
      x_r[16] <= x_r[15] + (y_r[15] >>> 15);
       y_r[16] <= y_r[15] - (x_r[15] >>> 15);
       angle_remain[16] <= angle_remain[15] + ANGLE_16;
      end
      end
       //第17次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[17] <= 17'sd0;
      y_r[17] <= 17'sd0;
      angle_remain[17] <= 24'sd0;
      end
      else if(angle_remain[16] > 24'sd0)
       begin
       x_r[17] <= x_r[16] - (y_r[16] >>> 16);
       y_r[17] <= y_r[16] + (x_r[16] >>> 16);
       angle_remain[17] <= angle_remain[16] - ANGLE_17;
      end
      else
      begin
      x_r[17] <= x_r[16] + (y_r[16] >>> 16);
       y_r[17] <= y_r[16] - (x_r[16] >>> 16);
       angle_remain[17] <= angle_remain[16] + ANGLE_17;
      end
      end
       //第18次旋转
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[18] <= 17'sd0;
      y_r[18] <= 17'sd0;
      angle_remain[18] <= 24'sd0;
      end
      else if(angle_remain[17] > 24'sd0)
       begin
       x_r[18] <= x_r[17] - (y_r[17] >>> 17);
       y_r[18] <= y_r[17] + (x_r[17] >>> 17);
       angle_remain[18] <= angle_remain[17] - ANGLE_18;
      end
      else
      begin
      x_r[18] <= x_r[17] + (y_r[17] >>> 17);
       y_r[18] <= y_r[17] - (x_r[17] >>> 17);
       angle_remain[18] <= angle_remain[17] + ANGLE_18;
      end
      end
       //第19次旋转
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[19] <= 17'sd0;
      y_r[19] <= 17'sd0;
      angle_remain[19] <= 24'sd0;
      end
      else if(angle_remain[18] > 24'sd0)
       begin
       x_r[19] <= x_r[18] - (y_r[15] >>> 18);
       y_r[19] <= y_r[18] + (x_r[15] >>> 18);
       angle_remain[19] <= angle_remain[18] - ANGLE_19;
      end
      else
      begin
      x_r[19] <= x_r[18] + (y_r[18] >>> 18);
       y_r[19] <= y_r[18] - (x_r[18] >>> 18);
       angle_remain[19] <= angle_remain[18] + ANGLE_19;
      end
      end
       //第20次旋转 
      always @(posedge clk or negedge rst_n)
      begin
      if(rst_n == 1'b0)
      begin
      x_r[20] <= 17'sd0;
      y_r[20] <= 17'sd0;
      angle_remain[20] <= 24'sd0;
      end
      else if(angle_remain[19] > 24'sd0)
       begin
       x_r[20] <= x_r[19] - (y_r[19] >>> 19);
       y_r[20] <= y_r[19] + (x_r[19] >>> 19);
       angle_remain[20] <= angle_remain[19] - ANGLE_20;
      end
      else
      begin
      x_r[20] <= x_r[19] + (y_r[19] >>> 19);
       y_r[20] <= y_r[19] - (x_r[19] >>> 19);
       angle_remain[20] <= angle_remain[19] + ANGLE_20;
       end
       end
      /****************************************************/
      //每个phi值的所在现象的流水线延迟
       always @(posedge clk or negedge rst_n)
       begin
       if(rst_n == 1'b0)
       begin
       quadrant_r[0] <= 2'b00; //不能合并着写
       quadrant_r[1] <= 2'b00;
       quadrant_r[2] <= 2'b00;
       quadrant_r[3] <= 2'b00;
       quadrant_r[4] <= 2'b00;
       quadrant_r[5] <= 2'b00;
       quadrant_r[6] <= 2'b00;
       quadrant_r[7] <= 2'b00;
       quadrant_r[8] <= 2'b00;
       quadrant_r[9] <= 2'b00;
       quadrant_r[10] <= 2'b00;
       quadrant_r[11] <= 2'b00;
       quadrant_r[12] <= 2'b00;
       quadrant_r[13] <= 2'b00;
       quadrant_r[14] <= 2'b00;
       quadrant_r[15] <= 2'b00;
       quadrant_r[16] <= 2'b00;
       quadrant_r[17] <= 2'b00;
       quadrant_r[18] <= 2'b00;
       quadrant_r[19] <= 2'b00;
       quadrant_r[20] <= 2'b00;
       end
       else
       begin
       quadrant_r[0] <= quadrant_flag;
       quadrant_r[1] <= quadrant_r[0];
       quadrant_r[2] <= quadrant_r[1];
       quadrant_r[3] <= quadrant_r[2];
       quadrant_r[4] <= quadrant_r[3];
       quadrant_r[5] <= quadrant_r[4];
       quadrant_r[6] <= quadrant_r[5];
       quadrant_r[7] <= quadrant_r[6];
       quadrant_r[8] <= quadrant_r[7];
       quadrant_r[9] <= quadrant_r[8];
       quadrant_r[10] <= quadrant_r[9];
       quadrant_r[11] <= quadrant_r[10];
       quadrant_r[12] <= quadrant_r[11];
       quadrant_r[13] <= quadrant_r[12];
       quadrant_r[14] <= quadrant_r[13];
       quadrant_r[15] <= quadrant_r[14];
       quadrant_r[16] <= quadrant_r[15];
       quadrant_r[17] <= quadrant_r[16];
       quadrant_r[18] <= quadrant_r[17];
       quadrant_r[19] <= quadrant_r[18];
       quadrant_r[20] <= quadrant_r[19];
       end
       end
      /****************************************************/
       assign ret_x = x_r[20];
       assign ret_y = y_r[20];
       assign quadrant = quadrant_r[20];
      /****************************************************/
      endmodule
  
 

后处理将象限变换过的坐标还原:


      /****************************************************/
      module  Cordic_Post(
       clk,
       rst_n,
       ret_x,
       ret_y,
       quadrant,
       sin_phi,
       cos_phi
       );
      /****************************************************/
       input clk;
       input rst_n;
       input signed [16:0] ret_x;
       input signed [16:0] ret_y;
       input [1:0] quadrant;
       output signed [16:0] sin_phi;
       output signed [16:0] cos_phi;
      /****************************************************/
       reg signed [16:0] sin_phi_r;
       reg signed [16:0] cos_phi_r;
      /****************************************************/
       always @(posedge clk or negedge rst_n)
       begin
       if(rst_n == 1'b0)
       begin
       sin_phi_r <= 17'sd0;
       cos_phi_r <= 17'sd0;
       end
       else
       case(quadrant) //根据原始角度所在象限,还原其三角函数值sin_phi和cos_phi
       2'd01: //若再乘上极径和模长补偿因子,则实现直角坐标系变换
       begin
       cos_phi_r <= ret_x;
       sin_phi_r <= ret_y;
       end
       2'd10:
       begin
       cos_phi_r <= ~ret_y + 1'b1;
       sin_phi_r <= ret_x;
       end
       2'd11:
       begin
       cos_phi_r <= ret_y;
       sin_phi_r <= ~ret_x + 1'b1;
       end
       2'd00:
       begin
       cos_phi_r <= ret_x;
       sin_phi_r <= ret_y;
       end
       default:
       begin
       sin_phi_r <= 17'sd0;
       cos_phi_r <= 17'sd0;
       end
       endcase
       end
      /****************************************************/
       assign sin_phi = sin_phi_r;
       assign cos_phi = cos_phi_r;
      /****************************************************/
      endmodule
  
 

在四个象限分别选取一个角度进行仿真,仿真结果如下图所示:

角度从输入到转换完毕,一共延时21个时钟周期。正好是预处理(1个周期)+旋转(20个周期)的结果。

2. 向量模式

至于向量模式,只要理解的算法思想,在编程上大同小异,如果要处理的坐标比较少,可以不采用流水线的方式。FPGA上用非流水线方式实现,Verilog主要代码片段如下,这次是用ROM存着旋转的固定角度值,利用addr地址线来读取相应的旋转角度:


      3'd2:
      if(times < 5'd16)
      begin
      if( yn_r !==22'd0) //当旋转到y=0时,提前结束,否则继续旋转反而影响精度
      begin
      if((yn_r[21])) //yn最高位为1时,即坐标在第四象限,则逆时针旋转
      begin
      xn_r <= xn_r - (yn_r >>> times);
      yn_r <= yn_r + (xn_r >>> times);
      addr_r <= addr_r + 1'd1;
      times <= addr_r;
      zn_r <= zn_r-angle;
      i <= 3'd2;
      end
      else
      begin //反之,坐标在第一象限,则顺时针旋转
      xn_r <= xn_r + (yn_r >>> times);
      yn_r <= yn_r - (xn_r >>> times);
      addr_r <= addr_r + 1'd1;
      times <= addr_r;
      zn_r <= zn_r+angle;
      i <= 3'd2;
      end
      end
      else
      begin
      i <= i +1'b1;
      end
      end
      else
      begin
      i <= i +1'b1;
      end
  
 

至此,cordic基于圆周系统的算法总结完毕,至于还有基于线性系统、双曲系统来实现其它运算,等有机会了再学习。

文章来源: reborn.blog.csdn.net,作者:李锐博恩,版权归原作者所有,如需转载,请联系作者。

原文链接:reborn.blog.csdn.net/article/details/87436090

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

作者其他文章

评论(0

抱歉,系统识别当前为高风险访问,暂不支持该操作

    全部回复

    上滑加载中

    设置昵称

    在此一键设置昵称,即可参与社区互动!

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。