FPGA设计心得(5)Aurora 例子工程分析与仿真实例分析(streaming版)
背景
熬夜写完了上两篇博客:
Aurora IP core 的理论学习记录
Aurora IP core 的定制详情记录
到这一篇应该就是分析例子程序了,最重要地还是通过仿真来认识Aurora通信。
Aurora IP核的定制,基本都是默认的,为了简单起见,GT Selection中选择了一个通道(lane)。
文章末尾会分享工程文件!
例子工程预览
由于本IP核定制选择了:
因此,程序加入了一些debug的IP核例化。
如下:
而对于我们要仿真而言,这些都是没有必要的。
对于我们用户应用来说,最最重要的模块为:
一个check,一个gen。
gen代表发数据的模块,而check则为收数据的模块。
如数据手册:
而如何对二者进行仿真呢?
形成一个回环,示意图如下:
一方发,另一方收,反之亦然!
而testbench的作用就是将二者联系起来:
下图清晰说明:
例子程序中带有仿真文件:
可见,例化了两次例子程序,就是为了将一方的tx送给另一方的rx,同时,另一方的tx送入一方的rx,形成一个闭环。
例子程序用户模块逻辑分析
收(CHECK)
我们知道收模块与aurora IP streaming用户接口之间的关系是:
因此,用户接口很简单,就两个信号进来就好,m_axi_rx_data以及m_axi_rx_valid即可,valid有效,则data数据为有效数据,至于收到的数据做什么处理,随你!例子程序的处理,我也不想深究,收过来按照自己的需求搞就完事了。
给出源码:
`timescale 1 ns / 1 ps
`define DLY #1
module aurora_8b10b_streaming_FRAME_CHECK
( // User Interface RX_D, RX_SRC_RDY_N, // System Interface USER_CLK, RESET, CHANNEL_UP, ERR_COUNT
);
//***********************************Port Declarations******************************* // User Interface
input [0:15] RX_D;
input RX_SRC_RDY_N; // System Interface
input USER_CLK;
input RESET;
input CHANNEL_UP;
output [0:7] ERR_COUNT;
//***************************Internal Register Declarations***************************
// Slack registers
reg [0:15] RX_D_SLACK;
reg RX_SRC_RDY_N_SLACK; reg [0:8] err_count_r = 9'd0; // RX Data registers
reg [0:15] data_lfsr_r; //*********************************Wire Declarations********************************** wire reset_c;
wire [0:15] data_lfsr_concat_w;
wire data_valid_c; wire data_err_detected_c;
reg data_err_detected_r; //*********************************Main Body of Code********************************** //Generate RESET signal when Aurora channel is not ready
assign reset_c = RESET;
// SLACK registers
always @ (posedge USER_CLK)
begin
RX_D_SLACK <= `DLY RX_D;
RX_SRC_RDY_N_SLACK <= `DLY RX_SRC_RDY_N;
end //______________________________ Capture incoming data ___________________________ //Data is valid when RX_SRC_RDY_N is asserted assign data_valid_c = !RX_SRC_RDY_N_SLACK; //generate expected RX_D using LFSR always @(posedge USER_CLK) if(reset_c) begin data_lfsr_r <= `DLY 16'hD5E6; //random seed value end else if(CHANNEL_UP) begin if(data_valid_c) data_lfsr_r <= `DLY {!{data_lfsr_r[3]^data_lfsr_r[12]^data_lfsr_r[14]^data_lfsr_r[15]}, data_lfsr_r[0:14]}; end else begin data_lfsr_r <= `DLY 16'hD5E6; //random seed value end assign data_lfsr_concat_w = {1{data_lfsr_r}}; //___________________________ Check incoming data for errors __________________________ //An error is detected when LFSR generated RX data from the data_lfsr_concat_w register, //does not match valid data from the RX_D port assign data_err_detected_c = (data_valid_c && (RX_D_SLACK != data_lfsr_concat_w)); //We register the data_err_detected_c signal for use with the error counter logic always @(posedge USER_CLK) data_err_detected_r <= `DLY data_err_detected_c; //Compare the incoming data with calculated expected data. //Increment the ERROR COUNTER if mismatch occurs. //Stop the ERROR COUNTER once it reaches its max value (i.e. 255) always @(posedge USER_CLK) if(CHANNEL_UP) begin if(&err_count_r) err_count_r <= `DLY err_count_r; else if(data_err_detected_r) err_count_r <= `DLY err_count_r + 1; end
else begin err_count_r <= `DLY 9'd0;
end //Here we connect the lower 8 bits of the count (the MSbit is used only to check when the counter reaches //max value) to the module output assign ERR_COUNT = err_count_r[1:8];
endmodule
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
仿真预告:
这便是收到的数据。
对了,程序中的这个输入变量:
RX_SRC_RDY_N
就是valid的反而已:
//______________________________ Capture incoming data ___________________________ //Data is valid when RX_SRC_RDY_N is asserted assign data_valid_c = !RX_SRC_RDY_N_SLACK;
- 1
- 2
- 3
其他的不言而喻!
发(GEN)
发要比收需要的信号多一个,那就是ready信号,具体为:
// User Interface
output [0:15] TX_D;
output TX_SRC_RDY_N;
input TX_DST_RDY_N;
- 1
- 2
- 3
- 4
根据streaming格式的关系:
我们用户逻辑需要得到一个ready有效信号,然后置位valid的同时,发送有效数据data。
例子发送程序根据lsfr产生随机数据发送:
//______________________________ Transmit Data __________________________________ //Transmit data when TX_DST_RDY_N is asserted. //Random data is generated using XNOR feedback LFSR //TX_SRC_RDY_N is asserted on every cycle with data always @(posedge USER_CLK) if(reset_c) begin data_lfsr_r <= `DLY 16'hABCD; //random seed value TX_SRC_RDY_N <= `DLY 1'b1; end else if(!TX_DST_RDY_N) begin data_lfsr_r <= `DLY {!{data_lfsr_r[3]^data_lfsr_r[12]^data_lfsr_r[14]^data_lfsr_r[15]}, data_lfsr_r[0:14]}; TX_SRC_RDY_N <= `DLY 1'b0; end //Connect TX_D to the DATA LFSR register assign TX_D = {1{data_lfsr_r}};
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
不需要多言!
下面给出完整发送程序:
`timescale 1 ns / 1 ps
`define DLY #1
module aurora_8b10b_streaming_FRAME_GEN
( // User Interface TX_D, TX_SRC_RDY_N, TX_DST_RDY_N, // System Interface USER_CLK, RESET, CHANNEL_UP
);
//*****************************Parameter Declarations****************************
//***********************************Port Declarations******************************* // User Interface
output [0:15] TX_D;
output TX_SRC_RDY_N;
input TX_DST_RDY_N; // System Interface
input USER_CLK;
input RESET;
input CHANNEL_UP;
//***************************External Register Declarations***************************
reg TX_SRC_RDY_N;
//***************************Internal Register Declarations***************************
reg [0:15] data_lfsr_r; wire reset_c; wire dly_data_xfer; reg [4:0] channel_up_cnt;
//*********************************Main Body of Code********************************** always @ (posedge USER_CLK)
begin if(RESET) channel_up_cnt <= `DLY 5'd0; else if(CHANNEL_UP) if(&channel_up_cnt) channel_up_cnt <= `DLY channel_up_cnt; else channel_up_cnt <= `DLY channel_up_cnt + 1'b1; else channel_up_cnt <= `DLY 5'd0;
end assign dly_data_xfer = (&channel_up_cnt); //Generate RESET signal when Aurora channel is not ready
assign reset_c = RESET || !dly_data_xfer; //______________________________ Transmit Data __________________________________ //Transmit data when TX_DST_RDY_N is asserted. //Random data is generated using XNOR feedback LFSR //TX_SRC_RDY_N is asserted on every cycle with data always @(posedge USER_CLK) if(reset_c) begin data_lfsr_r <= `DLY 16'hABCD; //random seed value TX_SRC_RDY_N <= `DLY 1'b1; end else if(!TX_DST_RDY_N) begin data_lfsr_r <= `DLY {!{data_lfsr_r[3]^data_lfsr_r[12]^data_lfsr_r[14]^data_lfsr_r[15]}, data_lfsr_r[0:14]}; TX_SRC_RDY_N <= `DLY 1'b0; end //Connect TX_D to the DATA LFSR register assign TX_D = {1{data_lfsr_r}}; endmodule
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
仿真预警:
这边是发送数据。
例子程序仿真文件分析
先给出仿真文件(然后在简单分析仿真文件):
`timescale 1 ns / 1 ps
module aurora_8b10b_streaming_TB;
//*************************Parameter Declarations************************** parameter SIM_MAX_TIME = 9500000; //To quit the simulation //125.0MHz GT Reference clock
parameter CLOCKPERIOD_1 = 8.0 ;
parameter CLOCKPERIOD_2 = 8.0 ;
//parameter CLOCKPERIOD_1 = 8.0;
//parameter CLOCKPERIOD_2 = 8.0;
parameter DRP_CLOCKPERIOD = 20.000 ; //GT DRP Clock
parameter INIT_CLOCKPERIOD = 20.0 ; // Board/System Clock //************************Internal Register Declarations***************************** //Freerunning Clock
reg reference_clk_1_n_r;
reg reference_clk_2_n_r;
reg drp_clk_r;
reg init_clk_p; //Global signals
reg gt_reset_in;
reg gsr_r;
reg gts_r;
reg reset_i;
//********************************Wire Declarations********************************** //Freerunning Clock
wire reference_clk_1_p_r;
wire reference_clk_2_p_r; wire init_clk_n;
//Dut1 //Error Detection Interface
wire hard_err_1_i; wire soft_err_1_i; //Status
wire channel_up_1_i; wire lane_up_1_i; //GT Serial I/O
wire rxp_1_i;
wire rxn_1_i; wire txp_1_i;
wire txn_1_i; // Error signals from the Local Link packet checker
wire [0:7] err_count_1_i; //Dut2 //Error Detection Interface
wire hard_err_2_i; wire soft_err_2_i; //Status
wire channel_up_2_i; wire lane_up_2_i; //GT Serial I/O
wire rxp_2_i;
wire rxn_2_i; wire txp_2_i;
wire txn_2_i; // Error signals from the Local Link packet checker
wire [0:7] err_count_2_i; //*********************************Main Body of Code********************************** //_________________________Serial Connections________________ assign rxn_1_i = txn_2_i; assign rxp_1_i = txp_2_i; assign rxn_2_i = txn_1_i; assign rxp_2_i = txp_1_i; //__________________________Global Signals_____________________________ //Simultate the global reset that occurs after configuration at the beginning //of the simulation. Note that both GT smart models use the same global signals. assign glbl.GSR = gsr_r; assign glbl.GTS = gts_r; initial begin gts_r = 1'b0; gsr_r = 1'b1; gt_reset_in = 1'b1; #5000; gsr_r = 1'b0; gt_reset_in = 1'b0; repeat(10) @(posedge init_clk_p); gt_reset_in = 1'b1; repeat(10) @(posedge init_clk_p); gt_reset_in = 1'b0; end //____________________________Clocks____________________________ initial reference_clk_1_n_r = 1'b0; always #(CLOCKPERIOD_1 / 2) reference_clk_1_n_r = !reference_clk_1_n_r; assign reference_clk_1_p_r = !reference_clk_1_n_r; initial reference_clk_2_n_r = 1'b0; always #(CLOCKPERIOD_2 / 2) reference_clk_2_n_r = !reference_clk_2_n_r; assign reference_clk_2_p_r = !reference_clk_2_n_r; initial drp_clk_r = 1'b0; always #(DRP_CLOCKPERIOD / 2) drp_clk_r = !drp_clk_r; initial init_clk_p = 1'b0; always #(INIT_CLOCKPERIOD / 2) init_clk_p = !init_clk_p; assign init_clk_n = !init_clk_p; //____________________________Resets____________________________ initial begin reset_i = 1'b1; #1000 reset_i = 1'b0; end //________________________Instantiate Dut 1 ________________
aurora_8b10b_streaming_exdes example_design_1_i
( // User IO .RESET(reset_i), // Error signals from Aurora .HARD_ERR(hard_err_1_i), .SOFT_ERR(soft_err_1_i), // Status Signals .LANE_UP(lane_up_1_i), .CHANNEL_UP(channel_up_1_i), .INIT_CLK_P(init_clk_p), .INIT_CLK_N(init_clk_n), .DRP_CLK_IN(drp_clk_r), .GT_RESET_IN(gt_reset_in), // Clock Signals .GTXQ0_P(reference_clk_1_p_r), .GTXQ0_N(reference_clk_1_n_r), // GT I/O .RXP(rxp_1_i), .RXN(rxn_1_i), .TXP(txp_1_i), .TXN(txn_1_i), // Error signals from the Local Link packet checker .ERR_COUNT(err_count_1_i)
); //________________________Instantiate Dut 2 ________________
aurora_8b10b_streaming_exdes example_design_2_i
( // User IO .RESET(reset_i), // Error signals from Aurora .HARD_ERR(hard_err_2_i), .SOFT_ERR(soft_err_2_i), // Status Signals .LANE_UP(lane_up_2_i), .CHANNEL_UP(channel_up_2_i), .INIT_CLK_P(init_clk_p), .INIT_CLK_N(init_clk_n), .DRP_CLK_IN(drp_clk_r), .GT_RESET_IN(gt_reset_in), // Clock Signals .GTXQ0_P(reference_clk_2_p_r), .GTXQ0_N(reference_clk_2_n_r), // GT I/O .RXP(rxp_2_i), .RXN(rxn_2_i), .TXP(txp_2_i), .TXN(txn_2_i), // Error signals from the Local Link packet checker .ERR_COUNT(err_count_2_i)
);
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
分为几个部分,
- 端口声明:
一般而言,输入声明为reg类型,输出为wire。
例如:
//GT Serial I/O
wire rxp_1_i;
wire rxn_1_i; wire txp_1_i;
wire txn_1_i;
- 1
- 2
- 3
- 4
- 5
- 6
但也不尽然如此,例如输入的差分时钟,我们就可以将其中一个声明为reg,至于差分的另一半,声明为wire,之后通过取反操作来实现:
//Freerunning Clock
reg reference_clk_1_n_r;
reg reference_clk_2_n_r;
reg drp_clk_r;
reg init_clk_p;
//********************************Wire Declarations********************************** //Freerunning Clock
wire reference_clk_1_p_r;
wire reference_clk_2_p_r; wire init_clk_n;
assign reference_clk_1_p_r = !reference_clk_1_n_r;
assign reference_clk_2_p_r = !reference_clk_2_n_r;
assign init_clk_n = !init_clk_p;
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 产生时钟
时钟较多,差分时钟产生方法是先生成p时钟或者n时钟,之后取反得到另一方:
//____________________________Clocks____________________________ initial reference_clk_1_n_r = 1'b0; always #(CLOCKPERIOD_1 / 2) reference_clk_1_n_r = !reference_clk_1_n_r; assign reference_clk_1_p_r = !reference_clk_1_n_r; initial reference_clk_2_n_r = 1'b0; always #(CLOCKPERIOD_2 / 2) reference_clk_2_n_r = !reference_clk_2_n_r; assign reference_clk_2_p_r = !reference_clk_2_n_r; initial drp_clk_r = 1'b0; always #(DRP_CLOCKPERIOD / 2) drp_clk_r = !drp_clk_r; initial init_clk_p = 1'b0; always #(INIT_CLOCKPERIOD / 2) init_clk_p = !init_clk_p; assign init_clk_n = !init_clk_p; //____________________________Resets____________________________ initial begin reset_i = 1'b1; #1000 reset_i = 1'b0; end
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 例化待测试模块
例化两次aurora例子程序,作为通信的双方:
//________________________Instantiate Dut 1 ________________
aurora_8b10b_streaming_exdes example_design_1_i
( // User IO .RESET(reset_i), // Error signals from Aurora .HARD_ERR(hard_err_1_i), .SOFT_ERR(soft_err_1_i), // Status Signals .LANE_UP(lane_up_1_i), .CHANNEL_UP(channel_up_1_i), .INIT_CLK_P(init_clk_p), .INIT_CLK_N(init_clk_n), .DRP_CLK_IN(drp_clk_r), .GT_RESET_IN(gt_reset_in), // Clock Signals .GTXQ0_P(reference_clk_1_p_r), .GTXQ0_N(reference_clk_1_n_r), // GT I/O .RXP(rxp_1_i), .RXN(rxn_1_i), .TXP(txp_1_i), .TXN(txn_1_i), // Error signals from the Local Link packet checker .ERR_COUNT(err_count_1_i)
); //________________________Instantiate Dut 2 ________________
aurora_8b10b_streaming_exdes example_design_2_i
( // User IO .RESET(reset_i), // Error signals from Aurora .HARD_ERR(hard_err_2_i), .SOFT_ERR(soft_err_2_i), // Status Signals .LANE_UP(lane_up_2_i), .CHANNEL_UP(channel_up_2_i), .INIT_CLK_P(init_clk_p), .INIT_CLK_N(init_clk_n), .DRP_CLK_IN(drp_clk_r), .GT_RESET_IN(gt_reset_in), // Clock Signals .GTXQ0_P(reference_clk_2_p_r), .GTXQ0_N(reference_clk_2_n_r), // GT I/O .RXP(rxp_2_i), .RXN(rxn_2_i), .TXP(txp_2_i), .TXN(txn_2_i), // Error signals from the Local Link packet checker .ERR_COUNT(err_count_2_i)
);
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
双方如何形成一个通路的呢?
1发接到2的收,2发接到1的收:
//_________________________Serial Connections________________ assign rxn_1_i = txn_2_i; assign rxp_1_i = txp_2_i; assign rxn_2_i = txn_1_i; assign rxp_2_i = txp_1_i;
- 1
- 2
- 3
- 4
- 5
- 6
- 7
由于数据是自己的gen模块以及产生的,故在设计文件中设计即可。
下面仿真实践,看看仿真图吧!
先宏观地看第一个仿真图:
可见,一方(简称partner1)和另一方(简称partner2)串行数据完全一致,理所当然如此,因为二者是直接相连的回环。
当然,这种串行数据我们是看不懂的,我们要看的是用户逻辑,模块check以及gen的数据,继续把二者拉出来仿真:
从partner1的gen中提取出valid,data,ready信号;
再从partner2的check中提取出valid和data信号。
二者构成一个通路。
上图中,TX_D就是s_axi_tx_data,而TX_DST_RDY_N取反就是s_axi_tx_tready,同理,TX_SRC_RDY_N取反是s_axi_tx_valid,故而,当TX_SRC_RDY_N和TX_DST_RDY_N都有效的时候,代表发送的数据TX_D为有效数据。
这一点从代码的端口定义可见等价关系:
同理,接收情况也是如此!
按照streaming用户接口的时序图:
当valid有效的时候,接收的数据才有效,因此,我们查看接收数据时刻应该在:
我们通过放大,来看看,这两个时刻上的数据是否一致?
可见,都是d5e6,而且后续数据也一致,可见,发送与接收的通道是没有问题的,至少从仿真上看是没有问题的。(这里提醒一句,这里对齐的时钟肯定是用户时钟,这里没有拉出来。)
从s_axi_tx_valid到s_axi_rx_valid有效的延迟时间,大家也可以算下,延迟了多久?(大概40多个user_clk 时钟周期了)。
写在最后
熬了个夜,学习了下aurora的理论以及到现在仿真了下streaming数据格式的aurora例子程序,由于疫情原因,还没有能到学校,因此上板是不可能了,也许再也不可能了,只能等到公司了。
下面会给出本例子程序的整个工程。
工程分享
提取码:03ii
aurora streaming工程例子工程分享
参考资料
Aurora IP核例子程序
交个朋友
文章来源: reborn.blog.csdn.net,作者:李锐博恩,版权归原作者所有,如需转载,请联系作者。
原文链接:reborn.blog.csdn.net/article/details/106067827
- 点赞
- 收藏
- 关注作者
评论(0)