Verilog初级教程(5)Verilog中的多维数组和存储器
写在前面
上篇博客讲了单比特的变量称为标量,多比特的变量称为向量。其实向量就类似于C或者其他语言中的一维数组,如果是reg类型的变量,对应的硬件逻辑是寄存器。
本篇博文进一步延伸,Verilog中也存在多维数组,它对应的硬件逻辑可以是存储器,诸如RAM,ROM,以及FIFO等。
- 个人微信公众号: FPGA LAB
正文
多维数组
还是简单一些说吧,多维数组在Verilog中对应的硬件元素可以是存储器,向量,也即一维数组,可以认为是深度为0的二维数组。
由于能对应于硬件的数组,例如RAM,通常有这么几个参数,深度,宽度,因此我们一般做到二维数组,当然更多维的不是不可以,不违背语法,但用途极为有限。
例如:
reg y1 [11:0]; // y is an scalar reg array of depth=12, each 1-bit wide
wire [0:7] y2 [3:0] // y is an 8-bit vector net with a depth of 4
reg [7:0] y3 [0:1][0:3]; // y is a 2D array rows=2,cols=4 each 8-bit wide
- 1
- 2
- 3
- 4
y1是一个reg类型的数组,其深度为12,宽度为1;
y2是一个wire类型的数组,其深度为4,宽度为8;
y3是一个多维(三维)数组,其意义不在多说。
上面的第二位定义,我们需要强调一下,还是统一规则为好,也就是宽度最好是高位在左,低位在右。
例如:
reg [0:0] y1 [11:0]; // y is an scalar reg array of depth=12, each 1-bit wide
wire [7:0] y2 [3:0] // y is an 8-bit vector net with a depth of 4
- 1
- 2
多维数组赋值
对于多维数组赋值,也就是对存储器赋值,我们不能像如下方式:
reg [7:0] a [15:0] = 0;
- 1
这种方式是错误的,我们需要选中对应的元素进行赋值,例如:
reg [7:0] a [15:0];
initial begin
a[0] = 16'h0000;
a[1] = 16'h0101;
//.......or
a[0][0] = 1'b0;
a[0][1] = 1'b1;
//......or
for(integer i = 0; i <16; i = i + 1) begin
a[i] <= 0;
end
end
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
上面的例子是在仿真文件中,当然在FPGA内,如此赋初值也是可以的,但更常用的还是通过系统函数readmemh:
$readmemh("file_name", mem_array, start_addr, stop_addr);
- 1
举一个仿真的例子:
module des ();
reg [7:0] mem1; // reg vector 8-bit wide
reg [7:0] mem2 [0:3]; // 8-bit wide vector array with depth=4
reg [15:0] mem3 [0:3][0:1]; // 16-bit wide vector 2D array with rows=4,cols=2 initial begin int i; mem1 = 8'ha9; $display ("mem1 = 0x%0h", mem1); mem2[0] = 8'haa; mem2[1] = 8'hbb; mem2[2] = 8'hcc; mem2[3] = 8'hdd; for(i = 0; i < 4; i = i+1) begin $display("mem2[%0d] = 0x%0h", i, mem2[i]); end for(int i = 0; i < 4; i += 1) begin for(int j = 0; j < 2; j += 1) begin mem3[i][j] = i + j; $display("mem3[%0d][%0d] = 0x%0h", i, j, mem3[i][j]); end end
end
endmodule
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
仿真结果:
ncsim> run
mem1 = 0xa9
mem2[0] = 0xaa
mem2[1] = 0xbb
mem2[2] = 0xcc
mem2[3] = 0xdd
mem3[0][0] = 0x0
mem3[0][1] = 0x1
mem3[1][0] = 0x1
mem3[1][1] = 0x2
mem3[2][0] = 0x2
mem3[2][1] = 0x3
mem3[3][0] = 0x3
mem3[3][1] = 0x4
ncsim: *W,RNQUIE: Simulation is complete.
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
内存
前言和前面的标题中都已经涉及到了内存,例如RAM等,它们可以使用二维数组进行建模。
例如:
mem就是一个深度为256,宽度为8bit的内存空间,而它在Verilog中就是通过一个二维数组建模的。
寄存器变量应用实例
寄存器变量,相当于一个一维数组,下面定义一个寄存器变量,并对其进行操作:复位有效时,对寄存器变量赋初值,当sel以及wr有效时,将输入赋值给寄存器,否则,寄存器的值保持。
例如:
module des ( input clk, input rstn, input wr, input sel, input [15:0] wdata, output [15:0] rdata); reg [15:0] register; always @ (posedge clk) begin if (!rstn) register <= 0; else begin if (sel & wr) register <= wdata; else register <= register; end
end assign rdata = (sel & ~wr) ? register : 0;
endmodule
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
硬件原理图显示,当写的控制逻辑处于有效状态时,会更新一个16位的触发器,当读的控制逻辑使能时,会返回当前值。
寄存器阵列应用实例
同理,举一个二位数组的例子:
module des ( input clk, input rstn, input [1:0] addr, input wr, input sel, input [15:0] wdata, output [15:0] rdata);
reg [15:0] register [0:3];
integer i;
always @ (posedge clk) begin if (!rstn) begin for (i = 0; i < 4; i = i+1) begin register[i] <= 0; end end else begin if (sel & wr) register[addr] <= wdata; else register[addr] <= register[addr]; end
end
assign rdata = (sel & ~wr) ? register[addr] : 0;
endmodule
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
在硬件原理图中可以看到,数组的每个索引都是一个16位的触发器,输入地址用于访问特定的触发器。
参考资料
交个朋友
-
个人微信公众号:FPGA LAB
-
知乎:李锐博恩
文章来源: reborn.blog.csdn.net,作者:李锐博恩,版权归原作者所有,如需转载,请联系作者。
原文链接:reborn.blog.csdn.net/article/details/106974813
- 点赞
- 收藏
- 关注作者
评论(0)