yolov5和yolov5-face nms比较
【摘要】
yolov5中,
prediction.shape[2] -5 # number of classes,代表分类数,5后面是多分类,coco是80个分类。
shape[2]是85
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agn...
yolov5中,
prediction.shape[2] -5 # number of classes,代表分类数,5后面是多分类,coco是80个分类。
shape[2]是85
-
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
-
"""Performs Non-Maximum Suppression (NMS) on inference results
-
-
Returns:
-
detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
-
"""
-
-
nc = prediction.shape[2] -5 # number of classes
yolov5-face中,
prediction.shape[2]中5后面10个是5个关键点坐标,分类数
shape[2]是16
nc = prediction.shape[2] - 15 # number of classes
-
def non_max_suppression_face(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
-
"""Performs Non-Maximum Suppression (NMS) on inference results
-
Retu
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/118399994
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)