torch模拟sigmoid
【摘要】 收敛效果不好:
import torch t=torch.Tensor([1,1,1,1,1,1,1,1,1,1])x=torch.Tensor([-10,-5,-22,-0.5,1,2,3,7,8,90]) y= x.sigmoid() print(y) loss_fn = torch.nn.BCELoss() loss=loss_fn(t,y)print(los...
收敛效果不好:
-
-
-
-
import torch
-
-
-
t=torch.Tensor([1,1,1,1,1,1,1,1,1,1])
-
x=torch.Tensor([-10,-5,-22,-0.5,1,2,3,7,8,90])
-
-
y= x.sigmoid()
-
-
print(y)
-
-
loss_fn = torch.nn.BCELoss()
-
-
loss=loss_fn(t,y)
-
print(loss)
-
-
print(x)
-
-
-
import torch
-
-
bbb=torch.clamp(x,-10,10)/20+0.5
-
# bbb = torch.where(x > 10, torch.full_like(x, 10), x)
-
# bbb = torch.where(bbb < -10, torch.full_like(bbb, -10), bbb)
-
-
print(bbb)
-
loss=loss_fn(t,bbb)
-
print(loss)
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/94753894
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)