Group Normalization
【摘要】
https://github.com/kuangliu/pytorch-groupnorm/blob/master/groupnorm.py
Group Normalization
import torchimport torch.nn as nn class GroupNorm(nn.Module): def __init__(self...
https://github.com/kuangliu/pytorch-groupnorm/blob/master/groupnorm.py
Group Normalization
-
import torch
-
import torch.nn as nn
-
-
-
class GroupNorm(nn.Module):
-
def __init__(self, num_features, num_groups=32, eps=1e-5):
-
super(GroupNorm, self).__init__()
-
self.weight = nn.Parameter(torch.ones(1,num_features,1,1))
-
self.bias = nn.Parameter(torch.zeros(1,num_features,1,1))
-
self.num_groups = num_groups
-
self.eps = eps
-
-
def forward(self, x):
-
N,C,H,W = x.size()
-
G = self.num_groups
-
assert C % G == 0
-
-
x = x.view(N,G,-1)
-
mean = x.mean(-1, keepdim=True)
-
var = x.var(-1, keepdim=True)
-
-
x = (x-mean) / (var+self.eps).sqrt()
-
x = x.view(N,C,H,W)
-
return x * self.weight + self.bias
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/103638131
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)