bceloss 和CrossEntropyLoss
【摘要】
#!/usr/bin/env python# -*- coding: utf-8 -*-import time import torch import torch v = 0.5 # 1-0.0001v1 = v - 0.01a = torch.FloatTensor([[v, v1, v],[v, v1, v]])b = torch.FloatTensor...
-
#!/usr/bin/env python
-
# -*- coding: utf-8 -*-
-
import time
-
-
import torch
-
-
import torch
-
-
v = 0.5 # 1-0.0001
-
v1 = v - 0.01
-
a = torch.FloatTensor([[v, v1, v],[v, v1, v]])
-
b = torch.FloatTensor([[0, 0, 0],[1, 1, 1]])
-
-
loss_fn = torch.nn.BCELoss() # reduce=False, size_average=False)
-
-
x = loss_fn(a, b).item()
-
print(x)
-
-
a=a.view(-1,2)
-
print(a)
-
b=b.long()
-
cross= torch.nn.CrossEntropyLoss(reduction='sum')
-
-
aaa= cross(a, b)
-
print(aaa)
-
-
-
-
# tensor([[0.1933, 0.1425, 0.8572, 0.0224, 0.3811],
-
# [0.6134, 0.9766, 0.6086, 0.0163, 0.1514]])
-
# tensor([[2, 4, 0, 1, 3],
-
# [1, 0, 2, 4, 3]])
-
# tensor([[2, 3, 0, 4, 1],
-
# [1, 0, 2, 4, 3]])
-
#最小的索引在第2个位置,次小的索引在第3位
-
# tensor([[False, False, True, False, False],
-
# [True, True, True, False, False]])
-
# tensor([0.8572, 0.6134, 0.9766, 0.6086])
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/103266001
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)