pytorch 加载模型:
【摘要】 1.直接加载网络
import torch
pthfile = r'E:\anaconda\app\envs\luo\Lib\site-packages\torchvision\models\squeezenet1_1.pth'
net = torch.load(pthfile)
print(net)
import torch def remove...
1.直接加载网络
import torch
pthfile = r'E:\anaconda\app\envs\luo\Lib\site-packages\torchvision\models\squeezenet1_1.pth'
net = torch.load(pthfile)
print(net)
-
import torch
-
-
def remove_prefix(state_dict, prefix):
-
''' Old style model is stored with all names of parameters
-
share common prefix 'module.' '''
-
# logger.info('remove prefix \'{}\''.format(prefix))
-
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
-
return {f(key): value for key, value in state_dict.items()}
-
-
-
def load_model(model, pretrained_path, load_to_cpu):
-
print('Loading pretrained model from {}'.format(pretrained_path))
-
if load_to_cpu:
-
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage)
-
else:
-
device = torch.cuda.current_device()
-
pretrained_dict =
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/105229678
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)