pytorch判断类型
【摘要】
class ResNet(nn.Module): def __init__(self, block, layers, use_se=True): self.inplanes = 64 self.use_se = use_se super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel...
-
class ResNet(nn.Module):
-
-
def __init__(self, block, layers, use_se=True):
-
self.inplanes = 64
-
self.use_se = use_se
-
super(ResNet, self).__init__()
-
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, bias=False)
-
self.bn1 = nn.BatchNorm2d(64)
-
self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
-
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
-
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
-
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
-
self.bn2 = nn.BatchNorm2d(512)
-
self.dropout = nn.Dropout()
-
self.conv2 = nn.Conv2d(512, 512, kernel_size=7, stride=1, groups=512)
-
self.linear = Linear(10240, 512, bias=False)
-
self.bn3 = nn.BatchNorm1d(512)
-
-
for m in self.mo
文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/jacke121/article/details/103254815
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)