OpenCV 特征点检测与图像匹配

举报
风吹稻花香 发表于 2021/06/04 23:58:56 2021/06/04
【摘要】 特征点又称兴趣点、关键点,它是在图像中突出且具有代表意义的一些点,通过这些点我们可以用来识别图像、进行图像配准、进行3D重建等。本文主要介绍OpenCV中几种定位与表示关键点的函数。 一、Harris角点 角点是图像中最基本的一种关键点,它是由图像中一些几何结构的关节点构成,很多都是线条之间产生的交点。Harris角点是一类比较经典的角点类型,它的基本原理是计算图像...

特征点又称兴趣点、关键点,它是在图像中突出且具有代表意义的一些点,通过这些点我们可以用来识别图像、进行图像配准、进行3D重建等。本文主要介绍OpenCV中几种定位与表示关键点的函数。

一、Harris角点

角点是图像中最基本的一种关键点,它是由图像中一些几何结构的关节点构成,很多都是线条之间产生的交点。Harris角点是一类比较经典的角点类型,它的基本原理是计算图像中每点与周围点变化率的平均值。

  (1)

 (2)

其中I(x+u,y+u)代表了点(x,y)邻域点的灰度值。通过变换可以将上式变化为一个协方差矩阵求特征值的问题(2),具体数学原理本文不过多描述。

OpenCV的Hairrs角点检测的函数为cornerHairrs(),但是它的输出是一幅浮点值图像,浮点值越高,表明越可能是特征角点,我们需要对图像进行阈值化。我们使用一张建筑图像来显示:

首先我们来说明一下cornerHairrs()这个函数参数的意思:

前2参数是输入与输出,输入是一个灰度图像,输出是一个浮点图像,第三个参数指定角点分析的邻域,第4个参数实际上在角点求取过程中计算梯度图像的核窗口大小,第5个参数是它原理公式(2)中的一个系数。

从上面的例子的结果我们可以看到,有很多角点都是粘连在一起的,我们下面通过加入非极大值抑制来进一步去除一些粘在一起的角点。

非极大值抑制原理是,在一个窗口内,如果有多个角点则用值最大的那个角点,其他的角点都删除,窗口大小这里我们用3*3,程序中通过图像的膨胀运算来达到检测极大值的目的,因为默认参数的膨胀运算就是用窗口内的最大值替代当前的灰度值。程序的最后使用了一个画角点的函数将角点显示在图像中,这个函数与本系列第5篇中画角点的函数是一致的。

现在我们得到的效果就比默认的函数得到的结果有相当的改善。

由于cornerHarris的一些缺点,OpenCV提供了另一个相似的函数GoodFeaturesToTrack()它用角点间的距离限制来防止角点粘连在一起。

它可以得到与上面基本一致的结果。

二、FAST特征点

harris特征在算法复杂性上比较高,在大的复杂的目标识别或匹配应用上效率不能满足要求,OpenCV提供了一个快速检测角点的类FastFeatureDetector,而实际上FAST并不是快的意思,而是Features from Accelerated Segment Test,但这个算法效率确实比较高,下面我们来看看这个类的用法。

OpenCV里为角点检测提供了统一的接口,通过类下面的detect方法来检测对应的角点,而输出格式都是vector<KeyPoint>。

其中drawKeypoints是OpenCV提供的在图像上画角点的函数。它的参数可以让我们选择用不同的方式标记出特征点。

三、尺度不变的SURF特征

surf特征是类似于SIFT特征的一种尺度不变的特征点,它的优点在于比SIFT效率要高,在实际运算中可以达到实时性的要求,关于SURF的原理这里就不过多的介绍,网络上这类的文章很多。

类似于FAST特征点的求法,SURF也可以使用通用接口求得,而SURF特征的类为SurfFeatureDetector,类似的SIFT特征点的检测类为SiftFeatureDetector。

这里有一个值得说明的问题是:OpenCV2.4版本后好像把SurfFeatureDetector这个类的定义移到了头文件nonfree/features2d.hpp

中,所以头文件中要加入该文件,并且要把opencv_nonfree24xd.lib加入属性表的链接器熟悉的输入中,其中x换成你当前opencv的版本号。

最终的显示效果如下:

四、SURF特征的描述

在图像配准中,特征点的描述往往不是位置这么简单,而是使用了一个N维向量来描述一个特征点,这些描述子之间可以通过定义距离公式来比较相近程度。

SurfDescriptorExtractor 是一个提取SURF特征点以及其描述的类。

下面是一个宽景图像的拼接配准的例子:

程序中我们选择了25个配准点,得到最后的匹配如下:

 

 参考:http://www.cnblogs.com/ronny/p/opencv_road_9.html

总结:感觉特征点检测与匹配,从开始找亮点,后面慢慢演化,亮点位置加方向和距离,变成向量。

文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/jacke121/article/details/54881317

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。