矩阵的迹

举报
风吹稻花香 发表于 2021/06/05 01:53:13 2021/06/05
【摘要】 对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为 0 的矩阵。对角线上的元素可以为 0 或其他值。 对角矩阵 D =[ a, 0, 0]     [ 0, b, 0]     [ 0, 0, c] 在线性代数中,一个n×n的对角矩阵A的主对角线(从左上方至...


对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为 0 的矩阵。对角线上的元素可以为 0 或其他值。

对角矩阵
D =[ a, 0, 0]
    [ 0, b, 0]
    [ 0, 0, c]

线性代数中,一个n×n的对角矩阵A主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A(或迹数),一般记作tr(A)

性质

(1)设有N阶矩阵A,那么矩阵A的迹(用表示)就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。

1.迹是所有对角元的和
2.迹是所有 特征值的和
3.某些时候也利用tr(AB)=tr(BA)来求迹

文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/jacke121/article/details/54880985

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。